Suppr超能文献

Oxidative stress in fish cells: in vitro studies.

作者信息

Babich H, Palace M R, Stern A

机构信息

Stern College for Women, Yeshiva University, Department of Biological Sciences, New York, New York 10016.

出版信息

Arch Environ Contam Toxicol. 1993 Feb;24(2):173-8. doi: 10.1007/BF01141344.

Abstract

Bluegill sunfish BF-2 fibroblasts were used in the neutral red (NR) cytotoxicity assay to discern the toxicities of hydrogen peroxide (H2O2) and paraquat as indicated by their abilities to induce oxidative stress. The toxicity of H2O2 was markedly enhanced in BF-2 cells treated with the glutathione depleting agents, buthionine sulfoximine (BSO), maleic acid, and chlorodinitrobenzene; similar treatments did not sensitize the BF-2 cells to paraquat, a redox cycling xenobiotic. BSO treated BF-2 cells, however, were sensitized to nitrofurantoin, also a redox cycling chemical. Diethyldithiocarbamate, an inhibitor of superoxide dismutase, only weakly enhanced the sensitivity of the BF-2 cells to H2O2 and paraquat. 1,10-Phenanthroline, a chelator of Fe2+, reduced the cytotoxicity of H2O2 and paraquat, presumably by preventing hydroxyl radical formation in the Fenton reaction. Quin 2 AM, an intracellular chelator of Ca2+, markedly lessened the toxicity of H2O2, but not of paraquat; EGTA, an extracellular chelator of Ca2+, had no effect on the toxicity of H2O2 or paraquat. Apparently, perturbation of intracellular Ca2+ homeostasis is involved in H2O2 toxicity. For comparative purposes, some studies were performed with fathead minnow FHM epithelioid cells, BALB/c mouse 3T3 fibroblasts, and human HepG2 hepatoma cells. The BF-2 fibroblast/NR cytotoxicity red assay was shown to be a suitable model to study oxidative stress in fish.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验