Tuljapurkar S
Stanford University, CA 94305.
J Math Biol. 1993;31(3):253-71. doi: 10.1007/BF00166145.
Demographic dynamics is formally equivalent to the dynamics of a Markov chain, as is true of some nonlinear dynamical systems. Convergence to demographic equilibrium can be studied in terms of convergence in the Markov chain. Tuljapurkar (1982) showed that population entropy (Kolmogorov-Sinai entropy) provides information on the rate of this convergence. This paper begins by considering finite state Markov chains, providing elementary proofs of the relationship between convergence rate and entropy, and discusses in detail the uses and limitations of entropy as a convergence measure; these results also apply to Markovian dynamical systems. Next, new qualitative and quantitative arguments are used to discuss the demographic meaning of entropy. An exact relationship is established giving population entropy in terms of the eigenvalues of the Leslie matrix characteristic equation. Finally, the significance of imprimitive and periodic limits is discussed in relation to population entropy.
人口动态在形式上等同于马尔可夫链的动态,一些非线性动力系统也是如此。可以根据马尔可夫链中的收敛性来研究向人口均衡的收敛。图尔贾普尔卡(1982年)表明,人口熵(柯尔莫哥洛夫 - 西奈熵)提供了关于这种收敛速度的信息。本文首先考虑有限状态马尔可夫链,给出收敛速度与熵之间关系的基本证明,并详细讨论熵作为收敛度量的用途和局限性;这些结果也适用于马尔可夫动力系统。接下来,使用新的定性和定量论证来讨论熵的人口统计学意义。建立了一个精确的关系,根据莱斯利矩阵特征方程的特征值给出人口熵。最后,讨论了非本原和周期极限与人口熵相关的意义。