Suppr超能文献

双神经元抑制反馈模型中的双稳性、开关与工作记忆

Bistability, switches and working memory in a two-neuron inhibitory-feedback model.

作者信息

Kirillov A B, Myre C D, Woodward D J

机构信息

Biographics, Inc., Winston-Salem, NC 27104.

出版信息

Biol Cybern. 1993;68(5):441-9. doi: 10.1007/BF00198776.

Abstract

It was reported earlier that an inhibitory-feedback network inspired by neostriatal circuitry may exhibit a bistable character and spontaneous switching phenomenon within the neuronal activity. In the presence of noise and external excitation, a few local neurons switch "on" and generate streams of impulses while other neurons remain quiescent. In time, the existing "on" neurons spontaneously switch "off" and other neurons switch "on". In this paper we examine the nature of the bistability and switching phenomenon using a simple model consisting of two mutually inhibitory neurons. For nonspiking neuron model, described by a system of nonlinear differential equations, we present a simple bifurcation analysis, which follows the birth and annihilation of two stable fixed points when model parameters are varied. We show that both nonspiking and spiking models may have two stable states, but only spiking neurons exhibit switching. The mechanism of switching for model spiking neurons, described by an equivalent RC circuit with a number of currents, is analyzed using computer simulations. It is shown that switching can be described by a two-state Markov chain with one parameter, which depends on the set of model physiological parameters, such as duration of afterhyperpolarization (AHP), maximum and the time duration of inhibitory post-synaptic potentials (IPSP's) and amplitude of the neuron noise input. "On" and "off" states of the model can be rapidly changed by localized excitatory input and the network then sustains the pattern of "on" and "off" states. That is, such a network can be used as a programmable memory device.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

早前有报道称,受新纹状体回路启发的抑制性反馈网络可能在神经元活动中表现出双稳态特征和自发切换现象。在存在噪声和外部激发的情况下,少数局部神经元会“开启”并产生冲动流,而其他神经元则保持静止。随着时间的推移,现有的“开启”神经元会自发“关闭”,其他神经元则“开启”。在本文中,我们使用由两个相互抑制的神经元组成的简单模型来研究双稳态和切换现象的本质。对于由非线性微分方程组描述的非发放神经元模型,我们进行了简单的分岔分析,该分析跟踪了模型参数变化时两个稳定不动点的产生和消失。我们表明,非发放模型和发放模型都可能有两个稳定状态,但只有发放神经元表现出切换现象。通过计算机模拟分析了由具有多个电流的等效RC电路描述的发放神经元模型的切换机制。结果表明,切换可以用一个单参数的二态马尔可夫链来描述,该参数取决于模型生理参数集,如超极化后电位(AHP)的持续时间、抑制性突触后电位(IPSP)的最大值和持续时间以及神经元噪声输入的幅度。模型的“开启”和“关闭”状态可以通过局部兴奋性输入快速改变,然后网络维持“开启”和“关闭”状态的模式。也就是说,这样的网络可以用作可编程存储设备。(摘要截短至250字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验