Pezzulo Giovanni, LaPalme Joshua, Durant Fallon, Levin Michael
Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy.
Allen Discovery Center, Tufts University, Medford, MA, USA.
Philos Trans R Soc Lond B Biol Sci. 2021 Mar 29;376(1821):20190765. doi: 10.1098/rstb.2019.0765. Epub 2021 Feb 8.
Nervous systems' computational abilities are an evolutionary innovation, specializing and speed-optimizing ancient biophysical dynamics. Bioelectric signalling originated in cells' communication with the outside world and with each other, enabling cooperation towards adaptive construction and repair of multicellular bodies. Here, we review the emerging field of developmental bioelectricity, which links the field of basal cognition to state-of-the-art questions in regenerative medicine, synthetic bioengineering and even artificial intelligence. One of the predictions of this view is that regeneration and regulative development can restore correct large-scale anatomies from diverse starting states because, like the brain, they exploit bioelectric encoding of distributed goal states-in this case, pattern memories. We propose a new interpretation of recent stochastic regenerative phenotypes in planaria, by appealing to computational models of memory representation and processing in the brain. Moreover, we discuss novel findings showing that bioelectric changes induced in planaria can be stored in tissue for over a week, thus revealing that somatic bioelectric circuits can implement a long-term, re-writable memory medium. A consideration of the mechanisms, evolution and functionality of basal cognition makes novel predictions and provides an integrative perspective on the evolution, physiology and biomedicine of information processing . This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
神经系统的计算能力是一项进化创新,它专门化并优化了古老的生物物理动力学过程。生物电信号起源于细胞与外界以及细胞之间的通讯,使得多细胞生物体能够通过合作进行适应性构建和修复。在此,我们综述了发育生物电这一新兴领域,该领域将基础认知领域与再生医学、合成生物工程乃至人工智能等前沿问题联系起来。这一观点的预测之一是,再生和调节性发育能够从不同的起始状态恢复正确的大规模解剖结构,因为它们如同大脑一样,利用分布式目标状态的生物电编码——在这种情况下即模式记忆。我们通过引入大脑中记忆表征和处理的计算模型,对涡虫近期的随机再生表型提出了一种新的解释。此外,我们讨论了新的研究发现,这些发现表明涡虫中诱导产生的生物电变化能够在组织中存储超过一周,从而揭示了体细胞生物电回路能够实现一种长期的、可重写的记忆介质。对基础认知的机制、进化和功能的思考做出了新的预测,并为信息处理的进化、生理学和生物医学提供了一个综合视角。本文是主题为“基础认知:多细胞性、神经元与认知视角”的一部分。