Suppr超能文献

身体大小、代谢率、世代时间和分子钟。

Body size, metabolic rate, generation time, and the molecular clock.

作者信息

Martin A P, Palumbi S R

机构信息

Department of Zoology, University of Hawaii, Honolulu 96822.

出版信息

Proc Natl Acad Sci U S A. 1993 May 1;90(9):4087-91. doi: 10.1073/pnas.90.9.4087.

Abstract

There is increasing evidence for variation in rates of nucleotide substitution among divergent taxonomic groups. Here, we summarize published rate data and show a strong relationship between substitution rate and body size. For instance, rates of nuclear and mtDNA evolution are slow in whales, intermediate in primates, and fast in rodents. A similar relationship exists for poikilothermic vertebrates. However, these taxa have slower mtDNA substitution rates overall than do homeotherms of similar size. A number of physiological and life history variables are highly correlated with body size. Of these, generation time and metabolic rate explain some patterns of rate heterogeneity equally well. In many cases, however, differences in metabolic rate explain important exceptions to the generation time model. Correlation between metabolic rate and nucleotide substitution may be mediated by (i) the mutagenic effects of oxygen radicals that are abundant by-products of aerobic respiration, and (ii) increased rates of DNA synthesis and nucleotide replacement in organisms with higher metabolic rates. Both of these factors increase mutation rate by decreasing the "nucleotide generation time," the average length of time before a nucleotide is copied either through replication or repair. Reconsideration of the generation time hypothesis to include physiological effects such as metabolic rate improves the theoretical underpinnings of molecular evolution.

摘要

越来越多的证据表明,不同分类群体之间的核苷酸替换率存在差异。在此,我们总结已发表的速率数据,并表明替换率与体型之间存在密切关系。例如,鲸类的核DNA和线粒体DNA进化速率较慢,灵长类处于中等水平,而啮齿类则较快。变温脊椎动物也存在类似的关系。然而,总体而言,这些类群的线粒体DNA替换率比体型相似的恒温动物要慢。许多生理和生活史变量与体型高度相关。其中,世代时间和代谢率对一些速率异质性模式的解释同样有效。然而,在许多情况下,代谢率的差异解释了世代时间模型的重要例外情况。代谢率与核苷酸替换之间的相关性可能由以下因素介导:(i)有氧呼吸的丰富副产物氧自由基的诱变作用,以及(ii)代谢率较高的生物体中DNA合成和核苷酸替换速率的增加。这两个因素都通过缩短“核苷酸世代时间”(即一个核苷酸通过复制或修复被复制之前的平均时间长度)来提高突变率。重新考虑世代时间假说以纳入代谢率等生理效应,改善了分子进化的理论基础。

相似文献

1
Body size, metabolic rate, generation time, and the molecular clock.
Proc Natl Acad Sci U S A. 1993 May 1;90(9):4087-91. doi: 10.1073/pnas.90.9.4087.
2
Metabolic rate and directional nucleotide substitution in animal mitochondrial DNA.
Mol Biol Evol. 1995 Nov;12(6):1124-31. doi: 10.1093/oxfordjournals.molbev.a040286.
3
Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis.
Mol Phylogenet Evol. 1996 Feb;5(1):182-7. doi: 10.1006/mpev.1996.0012.
5
Evolutionary rates of insertion and deletion in noncoding nucleotide sequences of primates.
Mol Biol Evol. 1994 May;11(3):504-12. doi: 10.1093/oxfordjournals.molbev.a040130.
7
Substitution rates of organelle and nuclear genes in sharks: implicating metabolic rate (again).
Mol Biol Evol. 1999 Jul;16(7):996-1002. doi: 10.1093/oxfordjournals.molbev.a026189.
8
An evaluation of the molecular clock hypothesis using mammalian DNA sequences.
J Mol Evol. 1987;25(4):330-42. doi: 10.1007/BF02603118.
10
Molecular evidence from the nuclear genome for the time frame of human evolution.
J Mol Evol. 1997;44 Suppl 1:S121-32. doi: 10.1007/pl00000066.

引用本文的文献

1
Influence of life-history traits on mitochondrial DNA substitution rates exceeds that of metabolic rates in teleost fishes.
Curr Zool. 2024 Aug 24;71(3):284-294. doi: 10.1093/cz/zoae045. eCollection 2025 Jun.
2
Population size interacts with reproductive longevity to shape the germline mutation rate.
Proc Natl Acad Sci U S A. 2025 May 27;122(21):e2423311122. doi: 10.1073/pnas.2423311122. Epub 2025 May 20.
4
Distinct latitudinal patterns of molecular rates across vertebrates.
Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2423386122. doi: 10.1073/pnas.2423386122. Epub 2025 May 8.
5
Yeast mutation rates in alternative carbon sources reflect the influence of reactive oxygen species.
MicroPubl Biol. 2025 Feb 19;2025. doi: 10.17912/micropub.biology.001429. eCollection 2025.
6
Does metabolic rate influence genome-wide amino acid composition in the course of animal evolution?
Evol Lett. 2024 Nov 8;9(1):137-149. doi: 10.1093/evlett/qrae061. eCollection 2025 Feb.
7
Population size interacts with reproductive longevity to shape the germline mutation rate.
bioRxiv. 2024 Nov 9:2023.12.06.570457. doi: 10.1101/2023.12.06.570457.
8
Warmer is better for evolutionary rescue, driving a warm-to-cold bias in habitat colonization dynamics.
Proc Biol Sci. 2024 Oct;291(2032):20241605. doi: 10.1098/RSPB.2024.1605. Epub 2024 Oct 2.
9
Modeling Substitution Rate Evolution across Lineages and Relaxing the Molecular Clock.
Genome Biol Evol. 2024 Sep 3;16(9). doi: 10.1093/gbe/evae199.
10
Drivers of interlineage variability in mitogenomic evolutionary rates in Platyhelminthes.
Heredity (Edinb). 2024 Oct;133(4):276-286. doi: 10.1038/s41437-024-00712-2. Epub 2024 Aug 2.

本文引用的文献

1
Model of effectively neutral mutations in which selective constraint is incorporated.
Proc Natl Acad Sci U S A. 1979 Jul;76(7):3440-4. doi: 10.1073/pnas.76.7.3440.
2
A new method for calculating evolutionary substitution rates.
J Mol Evol. 1984;20(1):86-93. doi: 10.1007/BF02101990.
3
Mitochondrial DNA sequences of primates: tempo and mode of evolution.
J Mol Evol. 1982;18(4):225-39. doi: 10.1007/BF01734101.
5
Indirect induction of a clastogenic effect in epidermal cells by a tumor promoter.
Carcinogenesis. 1985 Sep;6(9):1279-84. doi: 10.1093/carcin/6.9.1279.
6
A comparative description of mitochondrial DNA differentiation in selected avian and other vertebrate genera.
Mol Biol Evol. 1985 Mar;2(2):109-25. doi: 10.1093/oxfordjournals.molbev.a040339.
7
Evidence for higher rates of nucleotide substitution in rodents than in man.
Proc Natl Acad Sci U S A. 1985 Mar;82(6):1741-5. doi: 10.1073/pnas.82.6.1741.
8
Normal oxidative damage to mitochondrial and nuclear DNA is extensive.
Proc Natl Acad Sci U S A. 1988 Sep;85(17):6465-7. doi: 10.1073/pnas.85.17.6465.
9
Complications inherent in scaling the basal rate of metabolism in mammals.
Q Rev Biol. 1988 Mar;63(1):25-54. doi: 10.1086/415715.
10
Molecular phylogeny and evolution of primate mitochondrial DNA.
Mol Biol Evol. 1988 Nov;5(6):626-44. doi: 10.1093/oxfordjournals.molbev.a040524.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验