Suppr超能文献

地高辛给药两种预测模型的评估。

Evaluation of two prediction models for digoxin dosing.

作者信息

Markantonis S L, Kyroudis A, Christopoulos T

机构信息

Clinical Pharmacokinetics Unit, Army Share Fund Hospital (NIMTS), Athens, Greece.

出版信息

Pharm World Sci. 1993 Feb 19;15(1):29-33. doi: 10.1007/BF02116166.

Abstract

The relationship between the digoxin elimination parameter (A%) and creatinine clearance (CLCr) was determined, from blood level data of 160 hospital patients receiving digoxin tablets. The linear regression equation obtained, which varied only slightly from that reported by Jelliffee previously, was used to predict serum digoxin concentrations in 140 patients of four age groups (50-60, 60-70, 70-80 and 80-90 years). The predictions made were found to be less biased and more precise, irrespective of the age of the patients, than those produced using another predictive method known as Dobbs method. However, correlation coefficients of predicted versus measured serum digoxin concentrations for each method did not differ significantly and frequency distribution analyses of prediction errors gave poor results (up to 63% only). Therefore, neither method can be considered to be superior to the other nor can they be said to ensure accurate predictions of serum digoxin concentrations.

摘要

通过对160例服用地高辛片的住院患者的血药浓度数据进行分析,确定了地高辛消除参数(A%)与肌酐清除率(CLCr)之间的关系。所得线性回归方程与Jelliffee之前报道的方程仅有细微差异,该方程被用于预测四个年龄组(50 - 60岁、60 - 70岁、70 - 80岁和80 - 90岁)的140例患者的血清地高辛浓度。结果发现,与使用另一种称为多布斯法的预测方法相比,无论患者年龄如何,所做的预测偏差更小、更精确。然而,两种方法预测的血清地高辛浓度与实测值的相关系数并无显著差异,且预测误差的频率分布分析结果不佳(最高仅达63%)。因此,两种方法都不能被认为优于对方,也不能说它们能确保准确预测血清地高辛浓度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验