Elhammer A P, Poorman R A, Brown E, Maggiora L L, Hoogerheide J G, Kézdy F J
Biochemistry Unit, Upjohn Company, Kalamazoo, Michigan 49001.
J Biol Chem. 1993 May 15;268(14):10029-38.
The acceptor substrate specificity of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase (GalNAc-transferase) was inferred from the amino acid sequences surrounding 196 O-glycosylation sites extracted from the National Biomedical Research Foundation Protein Database. When analyzed according to the cumulative enzyme specificity model (Poorman, R.A., Tomasselli, A.G., Heinrikson, R.L., and Kézdy, F.J. (1991) J. Biol. Chem. 266, 14554-14561) these data were found to be consistent with an enzymatic active site which interacts with an 8-amino-acid long segment of the substrate, spanning 3 amino acid residues preceding and 4 amino acid residues following the reactive serine or threonine. The model postulates independent interactions of the 8 amino acid moieties with their respective binding sites, designated as subsites P3 through P0 and P1' to P4'. High selectivity is expressed at all subsites toward serine, threonine, and proline. The inferred specificity was confirmed by in vitro bovine colostrum GalNAc-transferase-catalyzed glycosylation of unglycosylated proteins containing predicted sites for O-glycosylation and synthetic peptides designed to be GalNAc acceptors. In synthetic peptides the bovine colostrum GalNAc-transferase glycosylates threonine about 35 times faster than serine. Our results suggest that the specificity of the enzyme is not dependent on any particular secondary structure of the substrate but, rather, it is determined by the amino acids in the acceptor peptide segment as well as by the accessibility of this segment. It also appears likely that bovine colostrum GalNAc-transferase is able to catalyze in vivo the glycosylation of both threonine and serine residues.
UDP-N-乙酰半乳糖胺:多肽N-乙酰半乳糖胺基转移酶(GalNAc转移酶)的受体底物特异性是根据从国家生物医学研究基金会蛋白质数据库中提取的196个O-糖基化位点周围的氨基酸序列推断出来的。根据累积酶特异性模型(普尔曼,R.A.,托马塞利,A.G.,海因里克森,R.L.,和凯兹迪,F.J.(1991年)《生物化学杂志》266,14554 - 14561)进行分析时,发现这些数据与一个酶活性位点一致,该活性位点与底物的一个8个氨基酸长的片段相互作用,该片段跨越反应性丝氨酸或苏氨酸之前的3个氨基酸残基和之后的4个氨基酸残基。该模型假定8个氨基酸部分与其各自的结合位点(指定为亚位点P3至P0和P1'至P4')独立相互作用。在所有亚位点对丝氨酸、苏氨酸和脯氨酸都表现出高选择性。通过体外牛初乳GalNAc转移酶催化含有预测O-糖基化位点的未糖基化蛋白质以及设计为GalNAc受体的合成肽的糖基化,证实了推断的特异性。在合成肽中,牛初乳GalNAc转移酶使苏氨酸糖基化的速度比丝氨酸快约35倍。我们的结果表明,该酶的特异性不依赖于底物的任何特定二级结构,而是由受体肽段中的氨基酸以及该肽段的可及性决定。牛初乳GalNAc转移酶似乎也能够在体内催化苏氨酸和丝氨酸残基的糖基化。