Suppr超能文献

局部移动:一种用于蛋白质折叠模拟的高效算法。

Local moves: an efficient algorithm for simulation of protein folding.

作者信息

Elofsson A, Le Grand S M, Eisenberg D

机构信息

UCLA-DOE Lab of Structural Biology and Molecular Medicine, Molecular Biology Institute 90095-1570, USA.

出版信息

Proteins. 1995 Sep;23(1):73-82. doi: 10.1002/prot.340230109.

Abstract

We have enhanced genetic algorithms and Monte Carlo methods for simulation of protein folding by introducing "local moves" in dihedral space. A local move consists of changes in backbone dihedral angles in a sequential window while the positions of all atoms outside the window remain unchanged. We find three advantages of local moves: (1) For some energy functions, protein conformations of lower energy are found; (2) these low energy conformations are found in fewer steps; and (3) the simulations are less sensitive to the details of the annealing protocol. To distinguish the effectiveness of local move algorithm from the complexity of the energy function, we have used several different energy functions. These energy functions include the Profile score (Bowie et al., Science 253:164-170, 1991), the knowledge-based energy function used by Bowie and Eisenberg 1994 (Proc. Natl. Acad. Sci. U.S.A. 91:4434-4440, 1994), two energy terms developed as suggested by Sippl and coworkers (Hendlich et al., J. Mol. Biol. 216:167-180, 1990), and AMBER (Weiner and Kollman, J. Comp. Chem. 2:287-303, 1981). Besides these energy functions we have used three energy functions that include knowledge of the native structures: the RMSD from the native structure, the distance matrix error, and an energy term based on the distance between different residue types called DBIN. In some of these simulations the main advantage of local moves is the reduced dependence on the details of the annealing schedule. In other simulations, local moves are superior to other algorithms as structures with lower energy are found.

摘要

我们通过在二面角空间引入“局部移动”,增强了用于蛋白质折叠模拟的遗传算法和蒙特卡罗方法。局部移动包括在一个连续窗口内主链二面角的变化,而窗口外所有原子的位置保持不变。我们发现局部移动有三个优点:(1)对于某些能量函数,能找到能量更低的蛋白质构象;(2)能在更少的步骤中找到这些低能量构象;(3)模拟对退火协议的细节不太敏感。为了区分局部移动算法的有效性与能量函数的复杂性,我们使用了几种不同的能量函数。这些能量函数包括轮廓得分(鲍伊等人,《科学》253:164 - 170,1991)、鲍伊和艾森伯格1994年使用的基于知识的能量函数(《美国国家科学院院刊》91:4434 - 4440,1994)、西普尔及其同事建议开发的两个能量项(亨德利希等人,《分子生物学杂志》216:167 - 180,1990)以及AMBER(韦纳和科尔曼,《计算化学杂志》2:287 - 303,1981)。除了这些能量函数,我们还使用了三种包含天然结构知识的能量函数:与天然结构的均方根偏差、距离矩阵误差以及基于不同残基类型之间距离的一个能量项,称为DBIN。在其中一些模拟中,局部移动的主要优点是对退火时间表细节的依赖性降低。在其他模拟中,局部移动优于其他算法,因为能找到能量更低的结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验