Villringer A, Dirnagl U
Department of Neurology, Charité, Humboldt University, Berlin, Germany.
Cerebrovasc Brain Metab Rev. 1995 Fall;7(3):240-76.
The coupling of brain cell function to the vascular system is the basis for a number of functional neuroimaging methods relevant for human studies. These include methods as diverse as functional magnetic resonance imaging, positron emission tomography, single photon emission tomography, optimal intrinsic signals, as well as near infrared spectroscopy, a method that may have imaging capabilities in the near future. These methods map a specific localized brain activation through a vascular response, such as an increase in cerebral blood flow or a change in blood oxygenation. To understand these direct maps to obtain high resolution maps of localized functional brain activity, a precise knowledge of the specific underlying physiological mechanisms and methodological properties and restrictions is essential. In this article, these fundamental physiological and methodological aspects will be discussed. After reviewing how the techniques cited obtain maps of functional activity, we will discuss our current knowledge of the physiology of coupling with particular reference to the functional imaging techniques. Specifically, we will consider the function, the mediators, and the hemodynamic mechanisms of coupling and point out potential interference by diet, and neurological disease.
脑细胞功能与血管系统的耦合是多种与人体研究相关的功能性神经成像方法的基础。这些方法包括功能磁共振成像、正电子发射断层扫描、单光子发射断层扫描、最佳内在信号以及近红外光谱法(一种在不久的将来可能具备成像能力的方法)等多种不同的方法。这些方法通过血管反应来描绘特定局部脑区的激活情况,比如脑血流量的增加或血液氧合的变化。为了理解这些直接图谱以获得局部功能性脑活动的高分辨率图谱,精确了解特定的潜在生理机制以及方法学特性和局限性至关重要。在本文中,将讨论这些基本的生理和方法学方面的内容。在回顾了上述技术如何获得功能活动图谱之后,我们将讨论我们目前对耦合生理学的认识,尤其会参考功能成像技术。具体而言,我们将考虑耦合的功能、介质和血流动力学机制,并指出饮食和神经系统疾病可能产生的干扰。