Suppr超能文献

短间距回归结合漫射光学层析成像用于高密度功能近红外光谱的图像重建建模

Short-separation regression incorporated diffuse optical tomography image reconstruction modeling for high-density functional near-infrared spectroscopy.

作者信息

Gao Yuanyuan, Rogers De'Ja, von Lühmann Alexander, Ortega-Martinez Antonio, Boas David A, Yücel Meryem Ayşe

机构信息

Boston University, Neurophotonics Center, Boston, Massachusetts, United States.

出版信息

Neurophotonics. 2023 Apr;10(2):025007. doi: 10.1117/1.NPh.10.2.025007. Epub 2023 May 23.

Abstract

SIGNIFICANCE

Short-separation (SS) regression and diffuse optical tomography (DOT) image reconstruction, two widely adopted methods in functional near-infrared spectroscopy (fNIRS), were demonstrated to individually facilitate the separation of brain activation and physiological signals, with further improvement using both sequentially. We hypothesized that doing both simultaneously would further improve the performance.

AIM

Motivated by the success of these two approaches, we propose a method, SS-DOT, which applies SS and DOT simultaneously.

APPROACH

The method, which employs spatial and temporal basis functions to represent the hemoglobin concentration changes, enables us to incorporate SS regressors into the time series DOT model. To benchmark the performance of the SS-DOT model against conventional sequential models, we use fNIRS resting state data augmented with synthetic brain response as well as data acquired during a ball squeezing task. The conventional sequential models comprise performing SS regression and DOT.

RESULTS

The results show that the SS-DOT model improves the image quality by increasing the contrast-to-background ratio by a threefold improvement. The benefits are marginal at small brain activation.

CONCLUSIONS

The SS-DOT model improves the fNIRS image reconstruction quality.

摘要

意义

短间隔(SS)回归和扩散光学断层扫描(DOT)图像重建是功能近红外光谱(fNIRS)中广泛采用的两种方法,已证明它们各自有助于分离脑激活信号和生理信号,若依次使用这两种方法可进一步改善效果。我们推测同时进行这两种操作会进一步提高性能。

目的

受这两种方法成功的启发,我们提出了一种同时应用SS和DOT的方法,即SS-DOT。

方法

该方法利用空间和时间基函数来表示血红蛋白浓度变化,使我们能够将SS回归因子纳入时间序列DOT模型。为了将SS-DOT模型的性能与传统的顺序模型进行比较,我们使用了通过合成脑反应增强的fNIRS静息状态数据以及在握球任务期间采集的数据。传统的顺序模型包括执行SS回归和DOT。

结果

结果表明,SS-DOT模型通过将对比度与背景比提高三倍来改善图像质量。在小的脑激活情况下,益处不大。

结论

SS-DOT模型提高了fNIRS图像重建质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4202/10203730/a5a552f698cf/NPh-010-025007-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验