Suppr超能文献

使用单粒子追踪分析检测膜蛋白的临时侧向限制

Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis.

作者信息

Simson R, Sheets E D, Jacobson K

机构信息

Department of Cell Biology and Anatomy, University of North Carolina at Chapel Hill 27599-7090, USA.

出版信息

Biophys J. 1995 Sep;69(3):989-93. doi: 10.1016/S0006-3495(95)79972-6.

Abstract

Techniques such as single-particle tracking allow the characterization of the movements of single or very few molecules. Features of the molecular trajectories, such as confined diffusion or directed transport, can reveal interesting biological interactions, but they can also arise from simple Brownian motion. Careful analysis of the data, therefore, is necessary to identify interesting effects from pure random movements. A method was developed to detect temporary confinement in the trajectories of membrane proteins that cannot be accounted for by Brownian motion. This analysis was applied to trajectories of two lipid-linked members of the immunoglobulin superfamily, Thy-1 and a neural cell adhesion molecule (NCAM 125), and the results were compared with those for simulated random walks. Approximately 28% of the trajectories for both proteins exhibited periods of transient confinement, which were < 0.07% likely to arise from random movements. In contrast to these results, only 1.5% of the simulated trajectories showed confined periods. Transient confinement for both proteins lasted on average 8 s in regions that were approximately 280 nm in diameter.

摘要

诸如单粒子追踪等技术能够对单个或极少数分子的运动进行表征。分子轨迹的特征,比如受限扩散或定向运输,能够揭示有趣的生物相互作用,但它们也可能源于简单的布朗运动。因此,对数据进行仔细分析对于从纯粹的随机运动中识别出有趣的效应而言是必要的。已开发出一种方法来检测膜蛋白轨迹中的暂时受限情况,而这种受限无法用布朗运动来解释。该分析应用于免疫球蛋白超家族的两个脂质连接成员Thy-1和一种神经细胞黏附分子(NCAM 125)的轨迹,并将结果与模拟随机游走的结果进行比较。两种蛋白的约28%的轨迹呈现出短暂受限期,这些受限期由随机运动产生的可能性小于0.07%。与这些结果形成对比的是,只有1.5%的模拟轨迹显示出受限期。两种蛋白的短暂受限在直径约为280 nm的区域平均持续8秒。

相似文献

1
2
Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane.
Biochemistry. 1997 Oct 14;36(41):12449-58. doi: 10.1021/bi9710939.
3
Relationship of lipid rafts to transient confinement zones detected by single particle tracking.
Biophys J. 2002 Jan;82(1 Pt 1):274-84. doi: 10.1016/S0006-3495(02)75393-9.
4
Structural mosaicism on the submicron scale in the plasma membrane.
Biophys J. 1998 Jan;74(1):297-308. doi: 10.1016/S0006-3495(98)77787-2.
6
Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes.
Proc Natl Acad Sci U S A. 2005 Oct 18;102(42):15110-5. doi: 10.1073/pnas.0504407102. Epub 2005 Oct 11.
7
Time series analysis of particle tracking data for molecular motion on the cell membrane.
Bull Math Biol. 2009 Nov;71(8):1967-2024. doi: 10.1007/s11538-009-9434-6. Epub 2009 Aug 6.
8
Molecular motion in cell membranes: analytic study of fence-hindered random walks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 1):051907. doi: 10.1103/PhysRevE.77.051907. Epub 2008 May 13.
9
A Simple and Powerful Analysis of Lateral Subdiffusion Using Single Particle Tracking.
Biophys J. 2017 Dec 5;113(11):2452-2463. doi: 10.1016/j.bpj.2017.09.017.
10
Precise Detection and Visualization of Nanoscale Temporal Confinement in Single-Molecule Tracking Analysis.
Membranes (Basel). 2022 Jun 24;12(7):650. doi: 10.3390/membranes12070650.

引用本文的文献

4
Membranes are functionalized by a proteolipid code.
BMC Biol. 2024 Feb 27;22(1):46. doi: 10.1186/s12915-024-01849-6.
5
Ultrafast single-molecule imaging reveals focal adhesion nano-architecture and molecular dynamics.
J Cell Biol. 2023 Aug 7;222(8). doi: 10.1083/jcb.202110162. Epub 2023 Jun 6.
6
mGluR5 is transiently confined in perisynaptic nanodomains to shape synaptic function.
Nat Commun. 2023 Jan 16;14(1):244. doi: 10.1038/s41467-022-35680-w.
7
Statin-induced increase in actin polymerization modulates GPCR dynamics and compartmentalization.
Biophys J. 2023 Jun 6;122(11):1938-1955. doi: 10.1016/j.bpj.2022.08.039. Epub 2022 Aug 30.
8
Precise Detection and Visualization of Nanoscale Temporal Confinement in Single-Molecule Tracking Analysis.
Membranes (Basel). 2022 Jun 24;12(7):650. doi: 10.3390/membranes12070650.
10
Contribution of Membrane Lipids to Postsynaptic Protein Organization.
Front Synaptic Neurosci. 2021 Nov 23;13:790773. doi: 10.3389/fnsyn.2021.790773. eCollection 2021.

本文引用的文献

1
The shapes of random walks.
Science. 1987 Jul 24;237(4813):384-9. doi: 10.1126/science.237.4813.384.
3
Lateral diffusion in an archipelago. Single-particle diffusion.
Biophys J. 1993 Jun;64(6):1766-80. doi: 10.1016/S0006-3495(93)81548-0.
6
Anomalous diffusion due to obstacles: a Monte Carlo study.
Biophys J. 1994 Feb;66(2 Pt 1):394-401. doi: 10.1016/s0006-3495(94)80789-1.
7
Truncation mutants define and locate cytoplasmic barriers to lateral mobility of membrane glycoproteins.
Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3378-82. doi: 10.1073/pnas.91.8.3378.
9
The fluid mosaic model of the structure of cell membranes.
Science. 1972 Feb 18;175(4023):720-31. doi: 10.1126/science.175.4023.720.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验