Baldi P
Division of Biology and Jet Propulsion Laboratory, California Institute of Technology, Pasadena 91125, USA.
J Comput Biol. 1995 Fall;2(3):487-91. doi: 10.1089/cmb.1995.2.487.
Hidden Markov models (HMMs) provide a general framework for expressing primary sequence consensus. HMMs can effectively be used to model and align protein families, and to search data bases. HMMs, however, have a large number of parameters. When only few sequences are available for model fitting, additional prior information must be incorporated into the models. We derive a simple algorithm that directly incorporates prior information provided by substitution matrices into the HMM learning procedure.
隐马尔可夫模型(HMMs)为表达一级序列一致性提供了一个通用框架。HMMs可有效地用于对蛋白质家族进行建模和比对,以及搜索数据库。然而,HMMs有大量参数。当只有少数序列可用于模型拟合时,必须将额外的先验信息纳入模型。我们推导了一种简单算法,该算法可将替换矩阵提供的先验信息直接纳入HMM学习过程。