Packer M A, Murphy M P
Department of Biochemistry, University of Otago, New Zealand.
Eur J Biochem. 1995 Nov 15;234(1):231-9. doi: 10.1111/j.1432-1033.1995.231_c.x.
Nitric oxide reacts rapidly with superoxide to form the potent oxidant peroxynitrite. Mitochondria in vivo produce superoxide and in pathological situations the amount of superoxide produced increases; therefore, in the presence of nitric oxide, mitochondria will be a major site of peroxynitrite formation. Oxidative stress induces cyclosporin-A-sensitive mitochondrial calcium efflux and depolarisation which may contribute to tissue damage in pathological situations. To determine whether peroxynitrite could induce calcium efflux and depolarisation we exposed mitochondria to both nitric oxide and superoxide simultaneously, thus subjecting the mitochondria to a continual flux of peroxynitrite similar to that found in pathological situations. Our results show that: (a) exposure of mitochondria to nitric oxide plus superoxide induces cyclosporin-A-sensitive mitochondrial calcium efflux and depolarisation; (b) neither nitric oxide nor superoxide on their own induce calcium efflux or depolarisation under these conditions; (c) calcium efflux and depolarisation occur when peroxynitrite production (from nitric oxide and superoxide) exceeds about 0.99 +/- 0.03 nmol peroxynitrite.min-1 mg mitochondrial protein-1. This rate of production of peroxynitrite is similar in magnitude to superoxide formation by mitochondria in pathological situations, suggesting that mitochondria can produce sufficient peroxynitrite in vivo to cause mitochondrial calcium efflux and depolarisation. Our experiments suggest a plausible model for tissue damage when mitochondrial superoxide production increases, for example in ischaemia-reperfusion injury or following exposure to neurotoxins. In the presence of nitric oxide the mitochondrial superoxide production will lead to peroxynitrite formation which induces cyclosporin-A-sensitive mitochondrial calcium efflux and depolarisation. This disruption to mitochondrial function may in turn contribute to cell damage and death.
一氧化氮与超氧化物迅速反应形成强效氧化剂过氧亚硝酸盐。体内的线粒体产生超氧化物,在病理情况下超氧化物的产生量会增加;因此,在有一氧化氮存在的情况下,线粒体将成为过氧亚硝酸盐形成的主要部位。氧化应激诱导环孢素A敏感的线粒体钙外流和去极化,这可能在病理情况下导致组织损伤。为了确定过氧亚硝酸盐是否能诱导钙外流和去极化,我们将线粒体同时暴露于一氧化氮和超氧化物中,从而使线粒体受到类似于病理情况下发现的持续过氧亚硝酸盐通量的影响。我们的结果表明:(a)将线粒体暴露于一氧化氮加超氧化物会诱导环孢素A敏感的线粒体钙外流和去极化;(b)在这些条件下,单独的一氧化氮或超氧化物都不会诱导钙外流或去极化;(c)当过氧亚硝酸盐的产生(来自一氧化氮和超氧化物)超过约0.99±0.03 nmol过氧亚硝酸盐·分钟-1·毫克线粒体蛋白-1时,会发生钙外流和去极化。这种过氧亚硝酸盐的产生速率在大小上与病理情况下线粒体形成超氧化物的速率相似,这表明线粒体在体内可以产生足够的过氧亚硝酸盐以引起线粒体钙外流和去极化。我们的实验提出了一个当线粒体超氧化物产生增加时组织损伤的合理模型,例如在缺血再灌注损伤或接触神经毒素后。在有一氧化氮存在的情况下,线粒体超氧化物的产生将导致过氧亚硝酸盐的形成,从而诱导环孢素A敏感的线粒体钙外流和去极化。这种对线粒体功能的破坏反过来可能导致细胞损伤和死亡。