Suppr超能文献

计算个体客户显著变化和改善率的五种方法:对个体增长曲线方法的支持

Five methods for computing significant individual client change and improvement rates: support for an individual growth curve approach.

作者信息

Speer D C, Greenbaum P E

机构信息

Department of Aging and Mental Health, Florida Mental Health Institute, University of South Florida, Tampa 33612-3899, USA.

出版信息

J Consult Clin Psychol. 1995 Dec;63(6):1044-8. doi: 10.1037//0022-006x.63.6.1044.

Abstract

Interest has been renewed in methods for determining individual client change. Currently, there are at least 4 pretreatment-posttreatment (pre-post) difference score methods. A 5th method, based on a random effects model and multiwave data, represents a growth curve approach and was hypothesized to be more sensitive to detecting significant (p < .05) change than the pre-post methods. The change rates produced by the 5 methods were compared in a sample of 73 older outpatients with 3 to 5 assessments per client on a measure of well-being (H. J. Dupuy, 1977). Results indicated that the growth curve approach improvement rate was the highest (68.5%). The growth curve and the Edwards-Nunnally (63.0%) methods produced significantly (p < .05) higher improvement rates than the other 3 methods, with 1 exception.

摘要

人们对确定个体客户变化的方法重新产生了兴趣。目前,至少有4种治疗前-治疗后(前后)差异评分方法。第5种方法基于随机效应模型和多波数据,代表一种增长曲线方法,据推测,与前后方法相比,它在检测显著(p <.05)变化方面更敏感。在73名老年门诊患者的样本中,比较了这5种方法产生的变化率,每位患者在幸福感测量方面进行了3至5次评估(H. J. 杜皮,1977年)。结果表明,增长曲线方法的改善率最高(68.5%)。增长曲线方法和爱德华兹-南纳利方法(63.0%)产生的改善率显著(p <.05)高于其他3种方法,但有一个例外。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验