Suppr超能文献

在执行延迟定位任务的猴子中,额叶皮质中同时记录的单个神经元经历离散且稳定的状态序列。

Simultaneously recorded single units in the frontal cortex go through sequences of discrete and stable states in monkeys performing a delayed localization task.

作者信息

Seidemann E, Meilijson I, Abeles M, Bergman H, Vaadia E

机构信息

School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Israel.

出版信息

J Neurosci. 1996 Jan 15;16(2):752-68. doi: 10.1523/JNEUROSCI.16-02-00752.1996.

Abstract

To test whether spiking activity of six to eight simultaneously recorded neurons in the frontal cortex of a monkey can be characterized by a sequence of discrete and stable states, neuronal activity is analyzed by a hidden Markov model (HMM). Using the HMM method, we are able to detect distinct states of neuronal activity within which firing rates are approximately stationary. Transitions between states, as expressed by concomitant changes in the firing rates of several units, occur quite abruptly. The significance and consistency of the states are confirmed by comparison with simulated data. The detected states are specific to a monkey's response in a delayed localization task, allowing correct prediction of the response in approximately 90% of the trials. Similar predictive power is achieved by a model based simply on the response histograms (PSTH) of the units. The two models reach this predictive ability with different time courses: the PSTH model gains predictive power with a higher rate in the first second of the delay, and the HMM gains predictive power with higher rate in the next 3 sec. In this later period, conventional methods such as the PSTH cannot detect any firing rate modulations, but the HMM successfully captures transitions between distinct states that are specific to the monkey's behavioral response and occur at highly variable times from trial to trial. Our results suggest that neuronal activity in this later period is described best as transitions among distinct states that may reflect discrete steps in the monkey's mental processes.

摘要

为了测试在猴子额叶皮层中同时记录的6至8个神经元的放电活动是否可以由一系列离散且稳定的状态来表征,我们通过隐马尔可夫模型(HMM)分析神经元活动。使用HMM方法,我们能够检测到神经元活动的不同状态,在这些状态下放电率大致稳定。状态之间的转换,如由几个单元的放电率的伴随变化所表示的,发生得相当突然。通过与模拟数据比较,证实了这些状态的显著性和一致性。检测到的状态特定于猴子在延迟定位任务中的反应,在大约90%的试验中能够正确预测反应。一个仅基于单元反应直方图(PSTH)的模型也实现了类似的预测能力。这两个模型以不同的时间进程达到这种预测能力:PSTH模型在延迟的第一秒内以较高的速率获得预测能力,而HMM在接下来的3秒内以较高的速率获得预测能力。在这个后期阶段,诸如PSTH之类的传统方法无法检测到任何放电率调制,但HMM成功捕捉到了特定于猴子行为反应的不同状态之间的转换,这些转换在每次试验中发生的时间高度可变。我们的结果表明,这个后期阶段的神经元活动最好被描述为不同状态之间的转换,这些状态可能反映了猴子心理过程中的离散步骤。

相似文献

引用本文的文献

5
Neuronal ensembles: Building blocks of neural circuits.神经元集合:神经网络的构建模块。
Neuron. 2024 Mar 20;112(6):875-892. doi: 10.1016/j.neuron.2023.12.008. Epub 2024 Jan 22.
6
Multistability in neural systems with random cross-connections.具有随机交叉连接的神经系统中的多稳定性。
Biol Cybern. 2023 Dec;117(6):485-506. doi: 10.1007/s00422-023-00981-w. Epub 2023 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验