Suppr超能文献

一种用于解决皮质数据集中过度分割和快速状态切换问题的粘性泊松隐马尔可夫模型。

A sticky Poisson Hidden Markov Model for solving the problem of over-segmentation and rapid state switching in cortical datasets.

作者信息

Li Tianshu, La Camera Giancarlo

机构信息

Department of Neurobiology & Behavior, Stony Brook University.

Graduate Program in Neuroscience, Stony Brook University.

出版信息

bioRxiv. 2025 Jan 2:2024.08.07.606969. doi: 10.1101/2024.08.07.606969.

Abstract

The application of hidden Markov models (HMMs) to neural data has uncovered hidden states and signatures of neural dynamics that are relevant for sensory and cognitive processes. However, training an HMM on cortical data requires a careful handling of model selection, since models with more numerous hidden states generally have a higher likelihood on new (unseen) data. A potentially related problem is the occurrence of very rapid state switching after decoding the data with an HMM. The first problem can lead to overfitting and over-segmentation of the data. The second problem is due to intermediate-to-low self-transition probabilities and is at odds with many reports that hidden states in cortex tend to last from hundred of milliseconds to seconds. Here, we show that we can alleviate both problems by regularizing a Poisson-HMM during training so as to enforce large self-transition probabilities. We call this algorithm the 'sticky Poisson-HMM' (sPHMM). When used together with the Bayesian Information Criterion for model selection, the sPHMM successfully eliminates rapid state switching, outperforming an alternative strategy based on an HMM with a large prior on the self-transition probabilities. The sPHMM also captures the ground truth in surrogate datasets built to resemble the statistical properties of the experimental data.

摘要

将隐马尔可夫模型(HMM)应用于神经数据,已揭示出与感觉和认知过程相关的神经动力学隐藏状态及特征。然而,在皮层数据上训练HMM需要谨慎处理模型选择问题,因为具有更多隐藏状态的模型通常在新的(未见过的)数据上具有更高的似然性。一个潜在相关的问题是,在用HMM解码数据后会出现非常快速的状态切换。第一个问题可能导致数据的过拟合和过度分割。第二个问题是由于中低自转移概率引起的,这与许多关于皮层中隐藏状态往往持续数百毫秒到数秒的报道不一致。在这里,我们表明,通过在训练期间对泊松HMM进行正则化以强制实现大的自转移概率,我们可以缓解这两个问题。我们将此算法称为“粘性泊松HMM”(sPHMM)。当与用于模型选择的贝叶斯信息准则一起使用时,sPHMM成功消除了快速状态切换,优于基于具有大的自转移概率先验的HMM的替代策略。sPHMM还在为类似于实验数据的统计特性而构建的替代数据集中捕捉到了基本事实。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/918b/11730910/7ee8724530cb/nihpp-2024.08.07.606969v2-f0006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验