Suppr超能文献

机械转导与骨骼对机械应变的功能反应

Mechanotransduction and the functional response of bone to mechanical strain.

作者信息

Duncan R L, Turner C H

机构信息

Biomechanics and Biomaterials Research Center, Indiana University Medical Center, Indianapolis 46202, USA.

出版信息

Calcif Tissue Int. 1995 Nov;57(5):344-58. doi: 10.1007/BF00302070.

Abstract

Mechanotransduction plays a crucial role in the physiology of many tissues including bone. Mechanical loading can inhibit bone resorption and increase bone formation in vivo. In bone, the process of mechanotransduction can be divided into four distinct steps: (1) mechanocoupling, (2) biochemical coupling, (3) transmission of signal, and (4) effector cell response. In mechanocoupling, mechanical loads in vivo cause deformations in bone that stretch bone cells within and lining the bone matrix and create fluid movement within the canaliculae of bone. Dynamic loading, which is associated with extracellular fluid flow and the creation of streaming potentials within bone, is most effective for stimulating new bone formation in vivo. Bone cells in vitro are stimulated to produce second messengers when exposed to fluid flow or mechanical stretch. In biochemical coupling, the possible mechanisms for the coupling of cell-level mechanical signals into intracellular biochemical signals include force transduction through the integrin-cytoskeleton-nuclear matrix structure, stretch-activated cation channels within the cell membrane, G protein-dependent pathways, and linkage between the cytoskeleton and the phospholipase C or phospholipase A pathways. The tight interaction of each of these pathways would suggest that the entire cell is a mechanosensor and there are many different pathways available for the transduction of a mechanical signal. In the transmission of signal, osteoblasts, osteocytes, and bone lining cells may act as sensors of mechanical signals and may communicate the signal through cell processes connected by gap junctions. These cells also produce paracrine factors that may signal osteoprogenitors to differentiate into osteoblasts and attach to the bone surface. Insulin-like growth factors and prostaglandins are possible candidates for intermediaries in signal transduction. In the effector cell response, the effects of mechanical loading are dependent upon the magnitude, duration, and rate of the applied load. Longer duration, lower amplitude loading has the same effect on bone formation as loads with short duration and high amplitude. Loading must be cyclic to stimulate new bone formation. Aging greatly reduces the osteogenic effects of mechanical loading in vivo. Also, some hormones may interact with local mechanical signals to change the sensitivity of the sensor or effector cells to mechanical load.

摘要

力传导在包括骨骼在内的许多组织的生理学中起着至关重要的作用。机械负荷可以抑制体内骨吸收并增加骨形成。在骨骼中,力传导过程可分为四个不同的步骤:(1)机械耦合,(2)生化耦合,(3)信号传递,以及(4)效应细胞反应。在机械耦合中,体内的机械负荷会导致骨骼变形,拉伸骨基质内和骨基质衬里的骨细胞,并在骨小管内产生液体流动。动态负荷与细胞外液流动以及骨骼内流动电位的产生有关,对刺激体内新骨形成最为有效。体外的骨细胞在暴露于液体流动或机械拉伸时会被刺激产生第二信使。在生化耦合中,将细胞水平的机械信号耦合到细胞内生化信号的可能机制包括通过整合素 - 细胞骨架 - 核基质结构的力转导、细胞膜内的拉伸激活阳离子通道、G蛋白依赖性途径,以及细胞骨架与磷脂酶C或磷脂酶A途径之间的联系。这些途径中每一个的紧密相互作用表明整个细胞是一个机械传感器,并且有许多不同的途径可用于机械信号的转导。在信号传递中,成骨细胞、骨细胞和骨衬里细胞可能充当机械信号的传感器,并可能通过由间隙连接连接的细胞突起传递信号。这些细胞还产生旁分泌因子,可以向骨祖细胞发出信号,使其分化为成骨细胞并附着在骨表面。胰岛素样生长因子和前列腺素可能是信号转导中的中介候选物。在效应细胞反应中,机械负荷的影响取决于施加负荷的大小、持续时间和速率。持续时间较长、幅度较低的负荷对骨形成的影响与持续时间短、幅度高的负荷相同。负荷必须是周期性的才能刺激新骨形成。衰老会大大降低体内机械负荷的成骨作用。此外,一些激素可能与局部机械信号相互作用,以改变传感器或效应细胞对机械负荷的敏感性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验