Suppr超能文献

犬气管稳态惰性气体交换建模。

Modeling steady-state inert gas exchange in the canine trachea.

作者信息

George S C, Souders J E, Babb A L, Hlastala M P

机构信息

Department of Chemical Engineering, University of Washington, Seattle 98195-6540, USA.

出版信息

J Appl Physiol (1985). 1995 Sep;79(3):929-40. doi: 10.1152/jappl.1995.79.3.929.

Abstract

The functional dependence between tracheal gas exchange and tracheal blood flow has been previously reported using six inert gases (sulfur hexafluoride, ethane, cyclopropane, halothane, ether, and acetone) in a unidirectionally ventilated (1 ml/s) canine trachea (J. E. Souders, S. C. George, N. L. Polissar, E. R. Swenson, and M. P. Hlastala. J. Appl. Physiol. 79: 918-928, 1995). To understand the relative contribution of perfusion-, diffusion- and ventilation-related resistances to airway gas exchange, a dynamic model of the bronchial circulation has been developed and added to the existing structure of a previously described model (S. C. George, A. L. Babb, and M. P. Hlastala. J. Appl. Physiol. 75: 2439-2449, 1993). The diffusing capacity of the trachea (in ml gas.s-1.atm-1) was used to optimize the fit of the model to the experimental data. The experimental diffusing capacities as predicted by the model in a 10-cm length of trachea are as follows: sulfur hexafluoride, 0.000055; ethane, 0.00070; cyclopropane, 0.0046; halothane, 0.029; ether, 0.10; and acetone, 1.0. The diffusing capacities are reduced relative to an estimated diffusing capacity. The ratio of experimental to estimated diffusing capacity ranges from 4 to 23%. The model predicts that over the ventilation-to-tracheal blood flow range (10-700) attained experimentally, tracheal gas exchange is limited primarily by perfusion- and diffusion-related resistances. However, the contribution of the ventilation-related resistance increases with increasing gas solubility and cannot be neglected in the case of acetone. The increased role of diffusion in tracheal gas exchange contrasts with perfusion-limited alveolar exchange and is due primarily to the increased thickness of the bronchial mucosa.

摘要

先前曾使用六种惰性气体(六氟化硫、乙烷、环丙烷、氟烷、乙醚和丙酮)在单向通气(1毫升/秒)的犬类气管中报道过气管气体交换与气管血流之间的功能依赖性(J.E. 苏德尔斯、S.C. 乔治、N.L. 波利萨尔、E.R. 斯文森和M.P. 赫拉斯拉拉。《应用生理学杂志》79: 918 - 928, 1995)。为了理解灌注、扩散和通气相关阻力对气道气体交换的相对贡献,已开发了支气管循环的动态模型并将其添加到先前描述模型的现有结构中(S.C. 乔治、A.L. 巴布和M.P. 赫拉斯拉拉。《应用生理学杂志》75: 2439 - 2449, 1993)。气管的扩散容量(以毫升气体·秒⁻¹·大气压⁻¹为单位)用于优化模型与实验数据的拟合。该模型预测的10厘米长气管中的实验扩散容量如下:六氟化硫,0.000055;乙烷,0.00070;环丙烷,0.0046;氟烷,0.029;乙醚,0.10;丙酮,1.0。相对于估计的扩散容量,扩散容量降低。实验扩散容量与估计扩散容量的比值范围为4%至23%。该模型预测,在实验达到的通气与气管血流范围(10 - 700)内,气管气体交换主要受灌注和扩散相关阻力的限制。然而,通气相关阻力的贡献随着气体溶解度的增加而增加,在丙酮的情况下不可忽略。扩散在气管气体交换中作用的增加与灌注受限的肺泡交换形成对比,主要是由于支气管黏膜厚度的增加。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验