Department of Bioengineering, University of Washington, Seattle, WA 98195-5061, USA.
Ann Biomed Eng. 2010 Mar;38(3):1017-30. doi: 10.1007/s10439-009-9884-x.
The multiple inert gas elimination technique (MIGET) provides a method for estimating alveolar gas exchange efficiency. Six soluble inert gases are infused into a peripheral vein. Measurements of these gases in breath, arterial blood, and venous blood are interpreted using a mathematical model of alveolar gas exchange (MIGET model) that neglects airway gas exchange. A mathematical model describing airway and alveolar gas exchange predicts that two of these gases, ether and acetone, exchange primarily within the airways. To determine the effect of airway gas exchange on the MIGET, we selected two additional gases, toluene and m-dichlorobenzene, that have the same blood solubility as ether and acetone and minimize airway gas exchange via their low water solubility. The airway-alveolar gas exchange model simulated the exchange of toluene, m-dichlorobenzene, and the six MIGET gases under multiple conditions of alveolar ventilation-to-perfusion, VA/Q, heterogeneity. We increased the importance of airway gas exchange by changing bronchial blood flow, Qbr. From these simulations, we calculated the excretion and retention of the eight inert gases and divided the results into two groups: (1) the standard MIGET gases which included acetone and ether and (2) the modified MIGET gases which included toluene and m-dichlorobenzene. The MIGET mathematical model predicted distributions of ventilation and perfusion for each grouping of gases and multiple perturbations of VA/Q and Qbr. Using the modified MIGET gases, MIGET predicted a smaller dead space fraction, greater mean VA, greater log(SDVA), and more closely matched the imposed VA distribution than that using the standard MIGET gases. Perfusion distributions were relatively unaffected.
多惰性气体消除技术(MIGET)提供了一种估计肺泡气体交换效率的方法。将六种可溶性惰性气体注入外周静脉。使用肺泡气体交换的数学模型(MIGET 模型)解释这些气体在呼吸、动脉血和静脉血中的测量值,该模型忽略了气道气体交换。描述气道和肺泡气体交换的数学模型预测,其中两种气体,乙醚和丙酮,主要在气道内交换。为了确定气道气体交换对 MIGET 的影响,我们选择了另外两种气体,甲苯和间二氯苯,它们与乙醚和丙酮具有相同的血液溶解度,并通过低水溶性最大限度地减少气道气体交换。气道-肺泡气体交换模型模拟了甲苯、间二氯苯和六种 MIGET 气体在多种肺泡通气-灌注、VA/Q、异质性条件下的交换。我们通过改变支气管血流量 Qbr 来增加气道气体交换的重要性。从这些模拟中,我们计算了八种惰性气体的排泄和保留,并将结果分为两组:(1)包括丙酮和乙醚的标准 MIGET 气体,(2)包括甲苯和间二氯苯的改良 MIGET 气体。MIGET 数学模型预测了每组气体的通气和灌注分布,以及 VA/Q 和 Qbr 的多次扰动。使用改良的 MIGET 气体,MIGET 预测的死腔分数更小、平均 VA 更大、log(SDVA) 更大,并且与施加的 VA 分布更匹配,而不是使用标准的 MIGET 气体。灌注分布相对不受影响。