Odagiri H, Wang J, German M S
Hormone Research Institute, University of California at San Francisco 94143-0534, USA.
J Biol Chem. 1996 Jan 26;271(4):1909-15. doi: 10.1074/jbc.271.4.1909.
Pancreatic islet beta cells regulate the rate of insulin gene transcription in response to a number of nutrients, the most potent of which is glucose. To test for its regulation by glucose, the promoter sequence was isolated from the human insulin gene. When linked to chloramphenicol acetyltransferase and transfected into primary islet cultures, the human insulin promoter is activated by glucose. In parallel islet transfections, glucose also activates the L-pyruvate kinase and islet amyloid chain ketoacid dehydrogenase E1a promoter, but it does not affect the beta cell glucose kinase promoter. Using deletion and substitution mutations of the proximal human insulin promoter, we mapped a metabolic response element to the E box, E1, at -100 base pairs relative to the transcription start site. Although the isolated E1 element responds to glucose, inclusion of either of two AT-rich sequences, A1 or A2/C1 on either side of E1, results in dramatic synergistic activation. Inclusion of A2/C1 also increases the response to glucose. The A2-E1-A1 region alone, however, does not explain all of the activity of the human insulin promoter in cultured islets, and other transcriptionally important elements likely to contribute to the glucose response as well.