Suppr超能文献

肝脏中胆汁盐从窦状隙血液转运至胆汁的分子机制。

Molecular mechanisms of hepatic bile salt transport from sinusoidal blood into bile.

作者信息

Meier P J

机构信息

Department of Medicine, University Hospital, Zurich, Switzerland.

出版信息

Am J Physiol. 1995 Dec;269(6 Pt 1):G801-12. doi: 10.1152/ajpgi.1995.269.6.G801.

Abstract

An increasingly complex picture has emerged in recent years regarding the bile salt transport polarity of hepatocytes. At the sinusoidal (or basolateral) plasma membrane two bile salt-transporting polypeptides have been cloned. The Na(+)-taurocholate-cotransporting polypeptide (Ntcp) can account for most, if not all, physiological properties of the Na(+)-dependent bile salt uptake function in mammalian hepatocytes. The cloned organic anion-transporting protein (Oatp1) can mediate Na(+)-independent transport of bile salts, sulfobromophthalein, estrogen conjugates, and a variety of other amphipathic cholephilic compounds. Hence, Oatp1 appears to correspond to the previously suggested basolateral multispecific bile sale transporter. Intracellular bile salt transport can be mediated by different pathways. Under basal bile salt flux conditions, conjugated trihydroxy bile salts bind to cytoplasmic binding proteins and reach the canalicular plasma membrane predominantly via cytoplasmic diffusion. More hydrophobic mono- and dihydroxy and high concentrations of trihydroxy bile salts associate with intracellular membrane-bound compartments, including transcytotic vesicles, endoplasmic reticulum (ER), and Golgi complex. A facilitated bile salt diffusion pathway has been demonstrated in the ER. The exact role of these and other (e.g., lysosomes, "tubulovesicular structures") organelles in overall vectorial transport of bile salts across hepatocytes is not yet known. Canalicular bile salt secretion is mediated by two ATP-dependent transport systems, one for monovalent bile salts and the second for divalent sulfated or glucuronidated bile salt conjugates. The latter is identical with the canalicular multispecific organic anion transporter, which also transports other divalent organic anions, such as glutathione S-conjugates. Potential dependent canalicular bile salt secretion has also been suggested to occur, but its exact mechanism and physiological significance remain unclear, since a potential driven bile salt uptake system has also been identified in the ER. Hypothetically, and similar to changes in cell volume, the intracellular potential could also play a role in the regulation of the number of bile salt carriers at the canalicular membrane and thereby indirectly influence the maximal canalicular bile salt transport capacity of hepatocytes.

摘要

近年来,关于肝细胞胆汁盐转运极性出现了一幅日益复杂的图景。在肝血窦(或基底外侧)质膜上,已克隆出两种胆汁盐转运多肽。钠-牛磺胆酸盐共转运多肽(Ntcp)可以解释哺乳动物肝细胞中依赖钠的胆汁盐摄取功能的大部分(如果不是全部)生理特性。克隆的有机阴离子转运蛋白(Oatp1)可以介导不依赖钠的胆汁盐、磺溴酞钠、雌激素结合物以及多种其他两亲性亲胆化合物的转运。因此,Oatp1似乎对应于先前提出的基底外侧多特异性胆汁盐转运体。细胞内胆汁盐转运可由不同途径介导。在基础胆汁盐通量条件下,结合型三羟基胆汁盐与细胞质结合蛋白结合,主要通过细胞质扩散到达胆小管质膜。疏水性更强的单羟基和二羟基胆汁盐以及高浓度的三羟基胆汁盐与细胞内膜结合区室相关联,包括转胞吞小泡、内质网(ER)和高尔基体复合体。在内质网中已证实存在一条促进胆汁盐扩散的途径。这些细胞器以及其他细胞器(如溶酶体、“微管泡结构”)在胆汁盐跨肝细胞的整体向量转运中的确切作用尚不清楚。胆小管胆汁盐分泌由两个依赖ATP的转运系统介导,一个用于单价胆汁盐,另一个用于二价硫酸化或葡萄糖醛酸化胆汁盐结合物。后者与胆小管多特异性有机阴离子转运体相同,该转运体也转运其他二价有机阴离子,如谷胱甘肽S结合物。也有人提出存在电位依赖性胆小管胆汁盐分泌,但其确切机制和生理意义仍不清楚,因为在内质网中也已鉴定出一个电位驱动的胆汁盐摄取系统。假设与细胞体积变化类似,细胞内电位也可能在调节胆小管膜上胆汁盐载体数量方面发挥作用,从而间接影响肝细胞的最大胆小管胆汁盐转运能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验