Suppr超能文献

Role of Fapy glycosylase and UvrABC excinuclease in the repair of UVA (320-400 nm)-mediated DNA damage in Escherichia coli.

作者信息

Shennan M G, Palmer C M, Schellhorn H E

机构信息

Department of Biology, McMaster University, Hamilton, Ontario, Canada.

出版信息

Photochem Photobiol. 1996 Jan;63(1):68-73. doi: 10.1111/j.1751-1097.1996.tb02993.x.

Abstract

In contrast to the damage caused by far-UV, the damage caused by UVA (320-400 nm) is largely oxygen dependent, suggesting near-UV-mediated DNA damage involves reactive oxygen species. The DNA repair enzymes that recognize oxidized bases may, therefore, be an important part of the cell's near-UV defense repertoire. To evaluate the relative importance of Fpg (Fapy) glycosylase (an enzyme known to remove oxidized bases) and the DNA damage-inducible UvrABC excinuclease in recovery from near-UV-induced stress, we have constructed fpg- and uvrA- derivatives of Escherichia coli and tested the response (survival) of these strains to both UVA and far-UV radiation. Relative to control strains, the fpg- derivatives were found to be consistently more sensitive to the lethal effects of UVA, but not far-UV radiation. In contrast, uvrA- mutants were more sensitive than control strains to both UVA and far-UV radiation. Thymine dimers, known to be produced by far-UV and corrected by UvrABC, were not generated by the UVA fluences used in this study, suggesting that some other UVA-induced lesion(s) is recognized and repaired by this excinuclease.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验