Suppr超能文献

反向传播神经网络中学习率与增益的可互换性。

The interchangeability of learning rate and gain in backpropagation neural networks.

作者信息

Thimm G, Moerland P, Fiesler E

机构信息

IDIAP, CH-1920 Martigny, Switzerland.

出版信息

Neural Comput. 1996 Feb 15;8(2):451-60. doi: 10.1162/neco.1996.8.2.451.

Abstract

The backpropagation algorithm is widely used for training multilayer neural networks. In this publication the gain of its activation function(s) is investigated. In specific, it is proven that changing the gain of the activation function is equivalent to changing the learning rate and the weights. This simplifies the backpropagation learning rule by eliminating one of its parameters. The theorem can be extended to hold for some well-known variations on the backpropagation algorithm, such as using a momentum term, flat spot elimination, or adaptive gain. Furthermore, it is successfully applied to compensate for the nonstandard gain of optical sigmoids for optical neural networks.

摘要

反向传播算法被广泛用于训练多层神经网络。在本出版物中,研究了其激活函数的增益。具体而言,已证明改变激活函数的增益等同于改变学习率和权重。这通过消除其一个参数简化了反向传播学习规则。该定理可扩展到适用于反向传播算法的一些著名变体,如使用动量项、消除平坦点或自适应增益。此外,它成功应用于补偿光学神经网络中光学Sigmoid函数的非标准增益。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验