Suppr超能文献

利用人工神经网络和逻辑回归模型分析和预测韩国老年人的体育参与情况。

Analysis and prediction of older adult sports participation in South Korea using artificial neural networks and logistic regression models.

机构信息

Department of Exercise Rehabilitation, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon, 21936, Republic of Korea.

出版信息

BMC Geriatr. 2023 Oct 19;23(1):676. doi: 10.1186/s12877-023-04375-2.

Abstract

BACKGROUND

Korea's aging population and the lack of older adult participation in sports are increasing medical expenses.

AIMS

This study aimed to segment older adult sports participants based on their demographic characteristics and exercise practice behavior and applied artificial neural network and logistic regression models to these segments to best predict the effect of medical cost reduction. It presents strategies for older adult sports participation.

METHODS

A sample comprising data on 1,770 older adults aged 50 years and above was drawn from the 2019 National Sports Survey. The data were analyzed through frequency analysis, hierarchical and K-means clustering, artificial neural network, logistic regression, cross-tabulation analyses, and one-way ANOVA using SPSS 23 and Modeler 14.2.

RESULTS

The participants were divided into five clusters. The artificial neural network and logistic analysis models showed that the cluster comprising married women in their 60s who participated in active exercise had the highest possibility of reducing medical expenses.

DISCUSSION

Targeting women in their 60s who actively participate in sports, the government should expand the supply of local gymnasiums, community centers, and sports programs. If local gymnasiums and community centers run sports programs and appoint appropriate sports instructors, the most effective medical cost reduction effect can be obtained.

CONCLUSIONS

This study contributes to the field by providing insights into the specific demographic segments to focus on for measures to reduce medical costs through sports participation.

摘要

背景

韩国人口老龄化以及老年人参与体育运动的人数不足,导致医疗费用不断增加。

目的

本研究旨在根据人口统计学特征和运动实践行为对老年运动参与者进行细分,并将人工神经网络和逻辑回归模型应用于这些细分领域,以最佳预测降低医疗成本的效果。为老年人参与体育运动提出策略。

方法

从 2019 年全国体育调查中抽取了 1770 名 50 岁及以上的老年人的数据作为样本。使用 SPSS 23 和 Modeler 14.2 对数据进行了频率分析、层次聚类和 K-均值聚类、人工神经网络、逻辑回归、交叉表分析和单因素方差分析。

结果

参与者被分为五个聚类。人工神经网络和逻辑分析模型表明,积极参加运动的 60 多岁已婚女性群体最有可能降低医疗费用。

讨论

政府应针对积极参加体育运动的 60 多岁女性,扩大当地健身房、社区中心和体育项目的供应。如果当地健身房和社区中心开设体育项目并任命合适的体育指导员,将获得最有效的医疗成本降低效果。

结论

本研究通过提供有关通过体育参与降低医疗成本的具体人口统计学细分领域的见解,为该领域做出了贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98aa/10585770/8cccdbbb903a/12877_2023_4375_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验