Lin C J, Lin C T
Department of Control Engineering, National Chiao-Tung University, Hsinchu, Taiwan, R.O.C.
Int J Neural Syst. 1995 Sep;6(3):283-98. doi: 10.1142/s0129065795000214.
This paper addresses the structure and an associated on-line learning algorithm of a feedforward multilayer connectionist network for realizing the basic elements and functions of a traditional fuzzy logic controller. The proposed Fuzzy Adaptive Learning Control Network (FALCON) can be contrasted with the traditional fuzzy logic control systems in their network structure and learning ability. An on-line structure/parameter learning algorithm, called FALCON-ART, is proposed for constructing the FALCON dynamically. The FALCON-ART can partition the input/output space in a flexible way based on the distribution of the training data. Hence it can avoid the problem of combinatorial growing of partitioned grids in some complex systems. It combines the backpropagation learning scheme for parameter learning and the fuzzy ART algorithm for structure learning. More notably, the FALCON-ART can on-line partition the input/output spaces, tune membership functions, and find proper fuzzy logic rules dynamically without any a priori knowledge or even any initial information on these. The proposed learning scheme has been successfully used to control two unstable nonlinear systems. They are the seesaw system and the inverted wedge system.
本文探讨了一种前馈多层连接主义网络的结构及相关在线学习算法,该网络用于实现传统模糊逻辑控制器的基本元件和功能。所提出的模糊自适应学习控制网络(FALCON)在网络结构和学习能力方面可与传统模糊逻辑控制系统形成对比。提出了一种名为FALCON-ART的在线结构/参数学习算法,用于动态构建FALCON。FALCON-ART能够基于训练数据的分布以灵活的方式划分输入/输出空间。因此,它可以避免在某些复杂系统中出现划分网格组合增长的问题。它将用于参数学习的反向传播学习方案与用于结构学习的模糊ART算法相结合。更值得注意的是,FALCON-ART可以在线划分输入/输出空间、调整隶属函数,并在没有任何先验知识甚至关于这些的任何初始信息的情况下动态找到合适的模糊逻辑规则。所提出的学习方案已成功用于控制两个不稳定的非线性系统。它们是跷跷板系统和倒楔系统。