Suppr超能文献

腺苷对下丘脑神经元中谷氨酸依赖性钙活性的突触前和突触后调节。

Adenosine pre- and postsynaptic modulation of glutamate-dependent calcium activity in hypothalamic neurons.

作者信息

Obrietan K, Belousov A B, Heller H C, van den Pol A N

机构信息

Department of Biological Sciences, Stanford University, California 94305, USA.

出版信息

J Neurophysiol. 1995 Nov;74(5):2150-62. doi: 10.1152/jn.1995.74.5.2150.

Abstract
  1. Within the hypothalamus, adenosine has been reported to influence temperature regulation, sleep homeostasis, and endocrine secretions. The effects of adenosine on hypothalamic neurons have not been studied at the cellular level. Adenosine (5 nM-30 microM) showed no influence on intracellular Ca2+ or electrical activity in the presence of glutamate receptor antagonists D-2-amino-5-phosphonovalerate and 6-cyano-7-nitroquinoxaline-2,3-dione; consequently, we examined the role of adenosine in modulating the activity of glutamate in cultured hypothalamic neurons (n > 1,700) with fura-2 Ca2+ digital imaging and whole cell patch-clamp electrophysiology in the absence of glutamate receptor block. 2. When glutamate receptors were not blocked, adenosine (1-30 microM) and the selective adenosine A1 receptor agonist N6-cyclopentyl adenosine (CPA; 5 nM-1 microM) caused a large reduction in intracellular Ca2+ and electrical activity, suggesting that glutamate neurotransmission was critical for an effect of adenosine to be detected. Neuronal Ca2+ levels were reversibly depressed by CPA (50 nM), with a maximum depression of 90%, and these effects were blocked by coadministration of the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). 3. Ca2+ levels in immature neurons before the time of synaptogenesis were not affected by adenosine. Adenosine A1 receptor activation suppressed glutamate-mediated Ca2+ activity in neurons in vitro 8 to 73 days. 4. Adenosine (1 or 10 microM) caused a hyperpolarization of membrane potential and a reduction of large postsynaptic potentials arising from endogenously released glutamate. The administration of low concentrations of CPA (5 nM) decreased the frequency of glutamate-mediated, neuronally synchronized Ca2+ transients and the frequency of postsynaptic potentials. 5. To compare the relative effects of adenosine on hypothalamic neurons with cells from other brain regions, we assayed the effects of CPA on glutamate-mediated Ca2+ in hippocampal and cortical cultures. CPA (50 nM) reversibly depressed glutamate-mediated Ca2+ rises in hypothalamic neurons by 35%, compared with 54% in hippocampal neurons and 46% in cortical neurons. 6. If it does play a functional role, adenosine should be released by hypothalamic cells. In some neurons the adenosine A1 receptor antagonists cyclopentyltheophylline or DPCPX caused an increase in intracellular Ca2+, suggesting that adenosine was secreted by hypothalamic cells, tonically depressing glutamate-enhanced neuronal Ca2+. 7. To determine whether adenosine could exert a postsynaptic effect, we coapplied it with glutamate agonists in the presence of tetrodotoxin. Within subpopulations of hypothalamic neurons, adenosine and CPA either inhibited (18% of total neurons) or potentiated (6% of total neurons) responses to glutamate, N-methyl-D-aspartate, and kainate by > or = 20%. 8. In contrast to the modest effects found in neurons, responses of hypothalamic astrocytes to the application of glutamate or the metabotropic glutamate receptor agonist (+/-)-trans-1-amino-1,3-cyclopentanedicarboxylic acid were strongly potentiated by adenosine (mean +225%) and CPA. 9. Together, these findings suggest that adenosine exerts a major presynaptic effect and a minor postsynaptic effect in the modulation of glutamate neurotransmission in the hypothalamus, where it can play a significant role in blocking a large part of the glutamate-induced Ca2+ rise. In the absence of glutamate transmission, adenosine has relatively little effect on either neuronal intracellular Ca2+ or electrical activity.
摘要
  1. 在下丘脑中,据报道腺苷会影响体温调节、睡眠稳态和内分泌分泌。腺苷对下丘脑神经元的作用尚未在细胞水平上进行研究。在存在谷氨酸受体拮抗剂D - 2 - 氨基 - 5 - 膦酰戊酸和6 - 氰基 - 7 - 硝基喹喔啉 - 2,3 - 二酮的情况下,腺苷(5 nM - 30 μM)对细胞内Ca²⁺或电活动没有影响;因此,我们在不存在谷氨酸受体阻断的情况下,用fura - 2 Ca²⁺数字成像和全细胞膜片钳电生理学研究了腺苷在调节培养的下丘脑神经元(n > 1700)中谷氨酸活性方面的作用。2. 当谷氨酸受体未被阻断时,腺苷(1 - 30 μM)和选择性腺苷A1受体激动剂N⁶ - 环戊基腺苷(CPA;5 nM - 1 μM)会导致细胞内Ca²⁺和电活动大幅降低,这表明谷氨酸神经传递对于检测到腺苷的作用至关重要。CPA(50 nM)可使神经元Ca²⁺水平可逆性降低,最大降低幅度为90%,并且这些作用可被同时给予的A1受体拮抗剂8 - 环戊基 - 1,3 - 二丙基黄嘌呤(DPCPX)阻断。3. 在突触形成之前的未成熟神经元中Ca²⁺水平不受腺苷影响。腺苷A1受体激活在体外8至73天内抑制了神经元中谷氨酸介导的Ca²⁺活性。4. 腺苷(1或10 μM)导致膜电位超极化,并降低了内源性释放的谷氨酸引起的大的突触后电位。给予低浓度的CPA(5 nM)可降低谷氨酸介导的、神经元同步的Ca²⁺瞬变频率和突触后电位频率。5. 为了比较腺苷对下丘脑神经元与其他脑区细胞的相对作用,我们检测了CPA对海马和皮质培养物中谷氨酸介导的Ca²⁺的影响。CPA(50 nM)使下丘脑神经元中谷氨酸介导的Ca²⁺升高可逆性降低35%,相比之下,海马神经元中降低54%,皮质神经元中降低46%。6. 如果腺苷确实发挥功能作用,它应该由下丘脑细胞释放。在一些神经元中,腺苷A1受体拮抗剂环戊基茶碱或DPCPX会导致细胞内Ca²⁺增加,这表明腺苷是由下丘脑细胞分泌的,可抑制谷氨酸增强的神经元Ca²⁺。7. 为了确定腺苷是否能发挥突触后作用,我们在存在河豚毒素的情况下将其与谷氨酸激动剂共同应用。在下丘脑神经元亚群中,腺苷和CPA对谷氨酸、N - 甲基 - D - 天冬氨酸和海人酸的反应要么抑制(占总神经元的18%)要么增强(占总神经元的6%)≥20%。8. 与在神经元中发现的适度作用相反,下丘脑星形胶质细胞对谷氨酸或代谢型谷氨酸受体激动剂(±) - 反式 - 1 - 氨基 - 1,3 - 环戊二羧酸的反应被腺苷(平均增加225%)和CPA强烈增强。9. 总之这些发现表明,腺苷在下丘脑谷氨酸神经传递的调节中发挥主要的突触前作用和次要的突触后作用,在其中它可以在阻断大部分谷氨酸诱导的Ca²⁺升高中发挥重要作用。在不存在谷氨酸传递的情况下,腺苷对神经元细胞内Ca²⁺或电活动的影响相对较小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验