Suppr超能文献

碱剩余或缓冲碱(强离子差)作为非呼吸性酸碱紊乱的指标。

Base excess or buffer base (strong ion difference) as measure of a non-respiratory acid-base disturbance.

作者信息

Siggaard-Andersen O, Fogh-Andersen N

机构信息

Department of Clinical Biochemistry, Herlev Hospital, University of Copenhagen, Denmark.

出版信息

Acta Anaesthesiol Scand Suppl. 1995;107:123-8. doi: 10.1111/j.1399-6576.1995.tb04346.x.

Abstract

Stewart in 1983 (Can J Physiol Pharmacol 1983: 61: 1444) reintroduced plasma buffer base under the name "strong ion difference" (SID). Buffer base was originally introduced by Singer and Hastings in 1948 (Medicine (Baltimore) 1948: 27: 223). Plasma buffer base, which is practically equal to the sum of bicarbonate and albuminate anions, may be increased due to an excess of base or due to an increased albumin concentration. Singer and Hastings did not consider changes in albumin as acid-base disorders and therefore used the base excess, i.e., the actual buffer base minus the buffer base at normal pH and pCO2, as measure of a non-respiratory acid-base disturbance. Stewart and followers, however, consider changes in albumin concentration to be acid-base disturbances: a patient with normal pH, pCO2, and base excess but with increased plasma buffer base due to increased plasma albumin concentration get the diagnoses metabolic (strong ion) alkalosis (because plasma buffer base is increased) combined with metabolic hyperalbuminaemic acidosis. Extrapolating to whole blood, anaemia and polycytaemia should represent types of metabolic alkalosis and acidosis, respectively. This reveals that the Stewart approach is absurd and anachronistic in the sense that an increase or decrease in any anion is interpreted as indicating an excess or deficit of a specific acid. In other words, a return to the archaic definitions of acids and bases as being the same as anions and cations. We conclude that the acid-base status (the hydrogen ion status) of blood and extracellular fluid is described in terms of the arterial pH, the arterial pCO2, and the extracellular base excess. It is measured with a modern pH-blood gas analyser. The electrolyte status of the plasma is a description of the most important electrolytes, usually measured in venous blood with a dedicated electrolyte analyser, i.e., Na+, Cl-, HCO3-, and K+. Albumin anions contribute significantly to the anions, but calculation requires measurement of pH in addition to albumin and is usually irrelevant. The bicarbonate concentration may be used as a screening parameter of a nonrespiratory acid-base disturbance when respiratory disturbances are taken into account. A disturbance in the hydrogen ion status automatically involves a disturbance in the electrolyte status, whereas the opposite need not be the case.

摘要

1983年,斯图尔特(《加拿大生理学与药理学杂志》1983年:61:1444)以“强离子差”(SID)的名称重新引入了血浆缓冲碱。缓冲碱最初是由辛格和黑斯廷斯于1948年提出的(《医学(巴尔的摩)》1948年:27:223)。血浆缓冲碱实际上等于碳酸氢根离子和白蛋白阴离子之和,可能由于碱过量或白蛋白浓度升高而增加。辛格和黑斯廷斯并不认为白蛋白的变化属于酸碱紊乱,因此使用碱剩余,即实际缓冲碱减去正常pH值和二氧化碳分压时的缓冲碱,作为非呼吸性酸碱紊乱的衡量指标。然而,斯图尔特及其追随者认为白蛋白浓度的变化属于酸碱紊乱:一名患者pH值、二氧化碳分压和碱剩余正常,但由于血浆白蛋白浓度升高导致血浆缓冲碱增加,会被诊断为代谢性(强离子)碱中毒(因为血浆缓冲碱增加)合并代谢性高白蛋白血症性酸中毒。推断到全血,贫血和红细胞增多症应分别代表代谢性碱中毒和酸中毒的类型。这表明斯图尔特的方法是荒谬且过时的,因为任何阴离子的增加或减少都被解释为特定酸的过量或不足。换句话说,又回到了将酸和碱与阴离子和阳离子等同的古老定义。我们得出结论,血液和细胞外液的酸碱状态(氢离子状态)通过动脉pH值、动脉二氧化碳分压和细胞外碱剩余来描述。它通过现代pH血气分析仪进行测量。血浆的电解质状态是对最重要电解质的描述,通常使用专用电解质分析仪在静脉血中进行测量,即钠离子、氯离子、碳酸氢根离子和钾离子。白蛋白阴离子对阴离子有显著贡献,但计算除了需要测量白蛋白外还需要测量pH值,通常并不相关。当考虑到呼吸性紊乱时,碳酸氢根离子浓度可作为非呼吸性酸碱紊乱的筛查参数。氢离子状态的紊乱会自动涉及电解质状态的紊乱,反之则不一定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验