Constable P D
Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, USA.
Vet Clin North Am Food Anim Pract. 1999 Nov;15(3):447-71. doi: 10.1016/s0749-0720(15)30158-4.
The traditional approach to evaluating acid-base balance uses the Henderson-Hasselbalch equation to categorize four primary acid-base disturbances: respiratory acidosis (increased PCO2), respiratory alkalosis (decreased PCO2), metabolic acidosis (decreased extracellular base excess), or metabolic alkalosis (increased extracellular base excess). The anion gap is calculated to detect the presence of unidentified anions in plasma. This approach works well clinically and is recommended for use whenever serum total protein, albumin, and phosphate concentrations are approximately normal; however, when their concentrations are markedly abnormal, the Henderson-Hasselbalch equation frequently provides erroneous conclusions as to the cause of an acid-base disturbance. Moreover, the Henderson-Hasselbalch approach is more descriptive than mechanistic. The new approach to evaluating acid-base balance uses the simplified strong ion model to categorize eight primary acid-base disturbances: respiratory acidosis (increased PCO2), respiratory alkalosis (decreased PCO2), strong ion acidosis (decreased [SID+]) or strong ion alkalosis (increased [SID+]), nonvolatile buffer ion acidosis (increased [ATOT]) or nonvolatile buffer ion alkalosis (decreased [ATOT]), and temperature acidosis (increased body temperature) or temperature alkalosis (decreased body temperature). The strong ion gap is calculated to detect the presence of unidentified anions in plasma. This simplified strong ion approach works well clinically and is recommended for use whenever serum total protein, albumin, and phosphate concentrations are markedly abnormal. The simplified strong ion approach is mechanistic and is therefore well suited for describing the cause of any acid-base disturbance. The new approach should therefore be valuable in a clinical setting and in research studies investigating acid-base balance. The presence of unmeasured strong ions in plasma or serum (such as lactate, ketoacids, and uremic anions) is best detected by calculating the SIG. The AG, actual bicarbonate concentration, and standard bicarbonate concentration all ignore the effects that changes in plasma protein and phosphate concentration have on plasma pH, thereby inevitably leading to inaccuracies in estimating the unmeasured strong ion concentration in plasma.
评估酸碱平衡的传统方法是使用亨德森-哈塞尔巴尔赫方程对四种主要酸碱紊乱进行分类:呼吸性酸中毒(PCO₂升高)、呼吸性碱中毒(PCO₂降低)、代谢性酸中毒(细胞外碱剩余降低)或代谢性碱中毒(细胞外碱剩余升高)。计算阴离子间隙以检测血浆中未识别阴离子的存在。这种方法在临床上效果良好,并且在血清总蛋白、白蛋白和磷酸盐浓度大致正常时推荐使用;然而,当它们的浓度明显异常时,亨德森-哈塞尔巴尔赫方程常常会对酸碱紊乱的原因得出错误结论。此外,亨德森-哈塞尔巴尔赫方法更多是描述性的而非机制性的。评估酸碱平衡的新方法使用简化的强离子模型对八种主要酸碱紊乱进行分类:呼吸性酸中毒(PCO₂升高)、呼吸性碱中毒(PCO₂降低)、强离子酸中毒([SID⁺]降低)或强离子碱中毒([SID⁺]升高)、非挥发性缓冲离子酸中毒([ATOT]升高)或非挥发性缓冲离子碱中毒([ATOT]降低),以及温度性酸中毒(体温升高)或温度性碱中毒(体温降低)。计算强离子间隙以检测血浆中未识别阴离子的存在。这种简化的强离子方法在临床上效果良好,并且在血清总蛋白、白蛋白和磷酸盐浓度明显异常时推荐使用。简化的强离子方法是机制性的,因此非常适合描述任何酸碱紊乱的原因。因此,新方法在临床环境和调查酸碱平衡的研究中应该是有价值的。通过计算SIG能最好地检测血浆或血清中未测量的强离子(如乳酸、酮酸和尿毒症阴离子)的存在。AG、实际碳酸氢盐浓度和标准碳酸氢盐浓度都忽略了血浆蛋白和磷酸盐浓度变化对血浆pH的影响,从而不可避免地导致在估计血浆中未测量的强离子浓度时出现不准确情况。