Suppr超能文献

通过水合肌红蛋白、血红蛋白和溶菌酶粉末在冷却时的玻璃化行为以及再加热时的量热玻璃→液体转变和结晶行为来表征其二次水合壳。

Characterizing the secondary hydration shell on hydrated myoglobin, hemoglobin, and lysozyme powders by its vitrification behavior on cooling and its calorimetric glass-->liquid transition and crystallization behavior on reheating.

作者信息

Sartor G, Hallbrucker A, Mayer E

机构信息

Institut für Allgemeine, Anorganische, und Theoretische Chemie, Universität Innsbruck, Austria.

出版信息

Biophys J. 1995 Dec;69(6):2679-94. doi: 10.1016/S0006-3495(95)80139-6.

Abstract

For hydrated metmyoglobin, methemoglobin, and lysozyme powders, the freezable water fraction of between approximately 0.3-0.4 g water/g protein up to approximately 0.7-0.8 g water/g protein has been fully vitrified by cooling at rates up to approximately 1500 K min-1 and the influence of cooling rate characterized by x-ray diffractograms. This vitreous but freezable water fraction started to crystallize at approximately 210 K to cubic ice and at approximately 240 K to hexagonal ice. Measurements by differential scanning calorimetry have shown that this vitreous but freezable water fraction undergoes, on reheating at a rate of 30 K min-1, a glass-->liquid transition with an onset temperature of between approximately 164 and approximately 174 K, with a width of between approximately 9 and approximately 16 degrees and an increase in heat capacity of between approximately 20 and approximately 40 J K-1 (mol of freezable water)-1 but that the glass transition disappears upon crystallization of the freezable water. These calorimetric features are similar to those of water imbibed in the pores of a synthetic hydrogel but very different from those of glassy bulk water. The difference to glassy bulk water's properties is attributed to hydrophilic interaction and H-bonding of the macromolecules' segments with the freezable water fraction, which thereby becomes dynamically modified. Abrupt increase in minimal or critical cooling rate necessary for complete vitrification is observed at approximately 0.7-0.8 g water/g protein, which is attributed to an abrupt increase of water's mobility, and it is remarkably close to the threshold value of water's mobility on a hydrated protein reported by Kimmich et al. (1990, Biophys. J. 58:1183). The hydration level of approximately 0.7-0.8 g water/g protein is approximately that necessary for completing the secondary hydration shell.

摘要

对于水合高铁肌红蛋白、高铁血红蛋白和溶菌酶粉末,通过以高达约1500 K min-1的速率冷却,约0.3 - 0.4 g水/g蛋白质至约0.7 - 0.8 g水/g蛋白质的可冷冻水部分已完全玻璃化,且冷却速率的影响通过X射线衍射图表征。这种玻璃态但可冷冻的水部分在约210 K时开始结晶成立方冰,在约240 K时开始结晶成六方冰。差示扫描量热法测量表明,这种玻璃态但可冷冻的水部分在以30 K min-1的速率重新加热时,会发生玻璃态向液态的转变,起始温度在约164至约174 K之间,宽度在约9至约16度之间,热容增加在约20至约40 J K-1(每摩尔可冷冻水)之间,但当可冷冻水结晶时玻璃化转变消失。这些量热特征与合成水凝胶孔隙中吸收的水的特征相似,但与玻璃态本体水的特征非常不同。与玻璃态本体水性质的差异归因于大分子链段与可冷冻水部分的亲水相互作用和氢键,从而使可冷冻水部分发生动态改变。在约0.7 - 0.8 g水/g蛋白质时观察到完全玻璃化所需的最小或临界冷却速率突然增加,这归因于水流动性的突然增加,并且它非常接近Kimmich等人(1990年,《生物物理杂志》58:1183)报道的水合蛋白质上水流动性的阈值。约0.7 - 0.8 g水/g蛋白质的水合水平大约是完成二级水合壳所需的水平。

相似文献

10
Water's second glass transition.水的第二个玻璃化转变。
Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17720-5. doi: 10.1073/pnas.1311718110. Epub 2013 Oct 7.

引用本文的文献

1
Ice formation and solvent nanoconfinement in protein crystals.蛋白质晶体中的冰形成与溶剂纳米限域
IUCrJ. 2019 Mar 13;6(Pt 3):346-356. doi: 10.1107/S2052252519001878. eCollection 2019 May 1.
2
Essentials of Aquaphotomics and Its Chemometrics Approaches.水相光组学及其化学计量学方法要点
Front Chem. 2018 Aug 28;6:363. doi: 10.3389/fchem.2018.00363. eCollection 2018.
9
Slow cooling and temperature-controlled protein crystallography.缓慢冷却与温控蛋白质晶体学。
J Struct Funct Genomics. 2010 Mar;11(1):85-9. doi: 10.1007/s10969-009-9074-y. Epub 2009 Dec 10.
10
Slow cooling of protein crystals.蛋白质晶体的缓慢冷却。
J Appl Crystallogr. 2009 Oct 1;42(Pt 5):944-952. doi: 10.1107/S0021889809023553. Epub 2009 Aug 1.

本文引用的文献

4
Thermal denaturation procedures for hemoglobin.血红蛋白的热变性程序。
Methods Enzymol. 1994;231:514-24. doi: 10.1016/0076-6879(94)31035-1.
5
A global model of the protein-solvent interface.蛋白质-溶剂界面的全局模型。
Biophys J. 1994 Mar;66(3 Pt 1):601-14. doi: 10.1016/s0006-3495(94)80835-5.
9
Hydration of proteins and polypeptides.蛋白质和多肽的水合作用。
Adv Protein Chem. 1974;28:239-345. doi: 10.1016/s0065-3233(08)60232-6.
10
The properties of water in biological systems.生物系统中水的特性。
Annu Rev Biophys Bioeng. 1974;3(0):95-126. doi: 10.1146/annurev.bb.03.060174.000523.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验