Sartor G, Mayer E, Johari G P
Institut für Allgemeine, Anorganische und Theoretische Chemie, Universität Innsbruck, Austria.
Biophys J. 1994 Jan;66(1):249-58. doi: 10.1016/S0006-3495(94)80774-X.
Differential scanning calorimetric (DSC) studies of the glassy states of as-received and hydrated lysozyme, hemoglobin, and myoglobin powders, with water contents of < or = 0.25, < or = 0.30, and < or = 0.29 g/g of protein, show that their heat capacity slowly increases with increasing temperature, without showing an abrupt increase characteristic of glass-->liquid transition. Annealing (also referred to as physical aging) of the hydrated proteins causes their DSC scans to show an endothermic region, similar to an overshoot, immediately above the annealing temperature. This annealing effect appears at all temperatures between approximately 150 and 300 K. The area under these peaks increases with increasing annealing time at a fixed temperature. The effects are attributed to the presence of a large number of local structures in which macromolecular segments diffuse at different time scales over a broad range. The lowest time scale corresponds to the > N-H and -O-H group motions which become kinetically unfrozen at approximately 150-170 K on heating at a rate of 30 K min-1 and which have a relaxation time of 5-10 s in this temperature range. The annealing effects confirm that the individual glass transition of the relaxing local regions is spread over a temperature range up to the denaturation temperature region of the proteins. The interpretation is supported by simulation of DSC scans in which the distribution of relaxation times is assumed to be exceptionally broad and in which annealing done at several temperatures over a wide range produces endothermic effects (or regions of DSC scans) qualitatively similar to those observed for the hydrated proteins.
对刚收到的以及水合的溶菌酶、血红蛋白和肌红蛋白粉末的玻璃态进行差示扫描量热法(DSC)研究,这些粉末的含水量分别≤0.25、≤0.30和≤0.29 g/g蛋白质,结果表明它们的热容量随温度升高而缓慢增加,未显示出玻璃态向液态转变的特征性突然增加。水合蛋白质的退火(也称为物理老化)导致其DSC扫描在退火温度之上立即显示出一个吸热区域,类似于一个峰值。这种退火效应在大约150至300 K之间的所有温度下都会出现。在固定温度下,这些峰下的面积随退火时间的增加而增大。这些效应归因于存在大量局部结构,其中大分子链段在很宽的时间尺度范围内以不同速度扩散。最低的时间尺度对应于>N-H和-O-H基团的运动,在以30 K min-1的速率加热时,这些运动在大约150 - 170 K时动力学上解冻,并且在该温度范围内具有5 - 10 s的弛豫时间。退火效应证实了弛豫局部区域的单个玻璃化转变分布在一个温度范围内,直至蛋白质的变性温度区域。DSC扫描模拟支持了这一解释,在模拟中假设弛豫时间分布异常宽泛,并且在很宽温度范围内的几个温度下进行退火会产生与水合蛋白质中观察到的定性相似的吸热效应(或DSC扫描区域)。