Suppr超能文献

Measurement of the thermal inertia of the skin using successive thermograms taken at a stepwise change in ambient radiation temperature.

作者信息

Huang J, Togawa T

机构信息

Institute for Medical and Dental Engineering, Tokyo Medical and Dental University, Japan.

出版信息

Physiol Meas. 1995 Nov;16(4):213-25. doi: 10.1088/0967-3334/16/4/002.

Abstract

Skin thermal properties are difficult to measure in vivo in the steady state because there is a constant temperature gradient across the skin surface. However, measurement of skin thermal properties is postulated in quantitative evaluation for thermographic observation. In this study, imaging of the thermal inertia of the skin was attempted by thermographic measurements at a stepwise change in ambient radiation temperature achieved by quickly switching two hoods maintained at different temperatures. Using this technique, a total of 65 thermograms were sequentially recorded at intervals of 0.5 s beginning 2 s before the stepwise change. The image of skin thermal inertia was estimated by applying statistical curve fitting at each pixel of the thermograms. In addition, the emissivity and true temperature of the skin were also determined, together with thermal inertia, in a single measurement. Measurements were made at different sites on 10 subjects. The average values of thermal inertia of normal skin were scattered throughout a range from 1.4 x 10(3) to 2.1 x 10(3) W s1/2 m-2 K-1. Investigations of the relationship between skin blood flow and thermal inertia were also made by imaging thermal inertia when skin blood flow was changed by applying a vasodilator or vasoconstrictor on the skin surface. In a comparison with the data measured by laser Doppler flowmetry, the average slope of skin blood flow versus thermal inertia was 2.88 x 10(-4) V per W s1/2 m-2 K-1, and the thermal inertia of the skin with no blood flow was 1.03 x 10(3) W s1/2 m-2 K-1. The results also show an almost linear correlation between skin blood flow and thermal inertia in each individual, but inter-individual differences were also observed. The results suggest that skin blood flow distribution can be estimated by non-contact imaging of thermal inertia.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验