Nuutila P, Raitakari M, Laine H, Kirvelä O, Takala T, Utriainen T, Mäkimattila S, Pitkänen O P, Ruotsalainen U, Iida H, Knuuti J, Yki-Järvinen H
Turku Medical Cyclotron/PET Center, University of Turku, Finland.
J Clin Invest. 1996 Apr 1;97(7):1741-7. doi: 10.1172/JCI118601.
Defects in insulin stimulation of blood flow have been used suggested to contribute to insulin resistance. To directly test whether glucose uptake can be altered by changing blood flow, we infused bradykinin (27 microgram over 100 min), an endothelium-dependent vasodilator, into the femoral artery of 12 normal subjects (age 25+/-1 yr, body mass index 22+/-1 kg/m2) after an overnight fast (n = 5) and during normoglycemic hyperinsulinemic (n = 7) conditions (serum insulin 465+/-11 pmol/liter, 0-100 min). Blood flow was measured simultaneously in both femoral regions using [15O]-labeled water ([15O]H2O) and positron emission tomography (PET), before and during (50 min) the bradykinin infusion. Glucose uptake was measured immediately after the blood flow measurement simultaneously in both femoral regions using [18F]-fluoro-deoxy-glucose ([18F]FDG) and PET. During hyperinsulinemia, muscle blood flow was 58% higher in the bradykinin-infused (38+/-9 ml/kg muscle x min) than in the control leg (24+/-5, P<0.01). Femoral muscle glucose uptake was identical in both legs (60.6+/-9.5 vs. 58.7+/-9.0 micromol/kg x min, bradykinin-infused vs control leg, NS). Glucose extraction by skeletal muscle was 44% higher in the control (2.6+/-0.2 mmol/liter) than the bradykinin-infused leg (1.8+/-0.2 mmol/liter, P<0.01). When bradykinin was infused in the basal state, flow was 98% higher in the bradykinin-infused (58+/-12 ml/kg muscle x min) than the control leg (28+/-6 ml/kg muscle x min, P<0.01) but rates of muscle glucose uptake were identical in both legs (10.1+/-0.9 vs. 10.6+/-0.8 micromol/kg x min). We conclude that bradykinin increases skeletal muscle blood flow but not muscle glucose uptake in vivo. These data provide direct evidence against the hypothesis that blood flow is an independent regulator of insulin-stimulated glucose uptake in humans.
胰岛素刺激血流功能缺陷被认为与胰岛素抵抗有关。为了直接测试改变血流是否能改变葡萄糖摄取,我们在12名正常受试者(年龄25±1岁,体重指数22±1kg/m²)禁食过夜后(n = 5)以及在正常血糖高胰岛素血症状态下(n = 7)(血清胰岛素465±11pmol/升,0 - 100分钟),将缓激肽(100分钟内输注27微克),一种内皮依赖性血管扩张剂,注入股动脉。在缓激肽输注前及输注期间(50分钟),使用[15O]标记水([15O]H2O)和正电子发射断层扫描(PET)同时测量双侧股部区域的血流。在血流测量后,立即使用[18F] - 氟脱氧葡萄糖([18F]FDG)和PET同时测量双侧股部区域的葡萄糖摄取。在高胰岛素血症期间,输注缓激肽的一侧肌肉血流(38±9ml/kg肌肉×分钟)比对照侧高58%(24±5,P<0.01)。双侧股部肌肉葡萄糖摄取相同(输注缓激肽侧为60.6±9.5对对照侧为58.7±9.0微摩尔/千克×分钟,无显著差异)。骨骼肌的葡萄糖提取率在对照侧(2.6±0.2毫摩尔/升)比输注缓激肽侧高44%(1.8±0.2毫摩尔/升,P<0.01)。当在基础状态下输注缓激肽时,输注缓激肽侧的血流(58±12ml/kg肌肉×分钟)比对照侧高98%(28±6ml/kg肌肉×分钟,P<0.01),但双侧肌肉葡萄糖摄取率相同(10.1±0.9对10.6±0.8微摩尔/千克×分钟)。我们得出结论,缓激肽可增加体内骨骼肌血流,但不增加肌肉葡萄糖摄取。这些数据直接证明了血流不是人类胰岛素刺激的葡萄糖摄取的独立调节因子这一假设不成立。