Kim P M, Wells P G
Faculty of Pharmacy, University of Toronto, Ontario, Canada.
Cancer Res. 1996 Apr 1;56(7):1526-32.
UDP-glucuronosyltransferases (UGTs) catalyze the glucuronidation and elimination of putative tobacco carcinogens such as benzo[a]pyrene (B[a]P) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), which may reduce competing bioactivation and toxicity. B[a]P-initiated cytotoxicity and micronucleus formation, believed to reflect carcinogenic initiation, are enhanced in UGT-deficient rat fibroblasts, and UGTs may provide similar genoprotection against NNK. Using skin fibroblasts from wild-type UGT-normal (+/+) and congenic heterozygous (+/j) and homozygous (j/j) UGT-deficient rats, this study evaluated NNK in relation to B[a]P with respect to the mechanism of genotoxicity, evidenced by micronucleus formation, and genoprotection++ by UGTs. Molecular mechanisms were determined by changes in B[a]P- and NNK-initiated micronucleus formation when cells were incubated with the antioxidative enzyme superoxide dismutase (1680 IU/ml), inhibitors of cytochrome P450 (1 mM 1-aminobenzotriazole) and peroxidases (1-aminobenzotriazole; 40 microM eicosatetraynoic acid), and inducers of CYP1A1/2(10 nM 2,3,7,8-tetrachlorodibenzo-p-dioxin) and peroxidases [2,3,7,8-tetrachlorodibezo-p-dioxin; 0.625 ng/ml (0.0367 nM) interleukin 1alpha; 1 microM 12-0-tetradecanoylphorbol-13-acetate]. In +/+ fibroblasts, NNK and B[a]P initiated concentration-dependent, respective maximum 2.7-fold and 1.7-fold increases over DMSO controls in micronucleus formation (P < 0.05), with 10 microM NNK being 2.4-fold more genotoxic than B[a]P (P < 0.05). In both +/j and j/j UGT-deficient cells, micronuclei initiated by NNK and B[a]P each were over 2-fold higher than that in +/+ UGT normal cells (P < 0.05). Both NNK- and B[a]P-initiated micronuclei were decreased by superoxide dismutase and cytochrome P450/peroxidase inhibitors, while only that initiated by B[a]P was enhanced, up to 2.4-fold, by inducers, of which only interleukin 1alpha was effective in all UGT phenotypes (P < 0.05). These results provide the first evidence that: (a) UGTs may be genoprotective for NNK, with even heterozygous UGT deficiencies being toxicologically critical; and (b) peroxidase-catalyzed bioactivation, reactive oxygen species, and molecular target oxidation may contribute differentially to the genotoxicity of both NNK and B[a]P.
尿苷二磷酸葡萄糖醛酸基转移酶(UGTs)催化假定的烟草致癌物如苯并[a]芘(B[a]P)和4-(甲基亚硝基氨基)-1-(3-吡啶基)-1-丁酮(NNK)的葡萄糖醛酸化及消除,这可能会减少竞争性生物活化作用和毒性。据信反映致癌起始作用的B[a]P引发的细胞毒性和微核形成在UGT缺陷型大鼠成纤维细胞中增强,并且UGTs可能对NNK提供类似的基因保护作用。本研究使用来自野生型UGT正常(+/+)、同基因杂合子(+/j)和纯合子(j/j)UGT缺陷型大鼠的皮肤成纤维细胞,评估了与B[a]P相关的NNK在微核形成所证明的遗传毒性机制以及UGTs的基因保护作用。当细胞与抗氧化酶超氧化物歧化酶(1680 IU/ml)、细胞色素P450抑制剂(1 mM 1-氨基苯并三唑)和过氧化物酶抑制剂(1-氨基苯并三唑;40 microM二十碳四烯酸)以及CYP1A1/2诱导剂(10 nM 2,3,7,8-四氯二苯并-p-二恶英)和过氧化物酶诱导剂[2,3,7,8-四氯二苯并-p-二恶英;0.625 ng/ml(0.0367 nM)白细胞介素1α;1 microM 12-O-十四酰佛波醇-13-乙酸酯]一起孵育时,通过B[a]P和NNK引发的微核形成的变化来确定分子机制。在+/+成纤维细胞中,NNK和B[a]P引发微核形成呈浓度依赖性,相对于二甲基亚砜对照分别最大增加2.7倍和1.7倍(P < 0.05),10 microM NNK的遗传毒性比B[a]P高2.4倍(P < 0.05)。在+/j和j/j UGT缺陷型细胞中,由NNK和B[a]P引发的微核均比+/+ UGT正常细胞中的高出2倍以上(P < 0.05)。超氧化物歧化酶和细胞色素P450/过氧化物酶抑制剂均可降低由NNK和B[a]P引发的微核,而只有由B[a]P引发的微核可被诱导剂增强,最高可达2.4倍,其中只有白细胞介素1α在所有UGT表型中均有效(P < 0.05)。这些结果首次证明:(a)UGTs可能对NNK具有基因保护作用,即使是杂合子UGT缺陷在毒理学上也至关重要;(b)过氧化物酶催化的生物活化、活性氧物种和分子靶点氧化可能对NNK和B[a]P的遗传毒性有不同的贡献。