Reddy K S, Yonetani T, Tsuneshige A, Chance B, Kushkuley B, Stavrov S S, Vanderkooi J M
Johnson Research Foundation, Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia 19104, USA.
Biochemistry. 1996 Apr 30;35(17):5562-70. doi: 10.1021/bi952596m.
The cyanide complex of FeIIMb prepared and maintained at temperatures below 0 degrees C is sufficiently stable to permit spectroscopic characterization and allow comparison with free HCN and other ferric and ferrous CN complexes. The visible absorption spectrum of FeIIMb-CN has a split alpha band maxima at 571 and 563 nm, suggesting distortion in the x-y plane of the porphyrin. FeIIMb-CN, like the CO complex, was found to be optically active by circular dichroism. The C-N stretching frequencies for the CN-ferrous complexes are very sensitive to parameters within the heme pocket. The values are as follows: FEIIMb at pH 8, 2057 cm-1 with a shoulder appearing at 2078 cm-1 at pH 5.6; FeIIMp, 2034 cm-1. In contrast, the frequencies for C-N stretch differ little among ferric heme complexes, ranging from 2123 to 2125 cm-1 for myoglobin, hemoglobin, and microperoxidase. These values compare with free HCN (2094 cm-1) or CN- (2080 cm-1). Quantum chemical modeling of the neutral iron-porphyrin complex with imidazole and cyanide and of its anion was used to explain the effects of the cyanide coordination and of iron reduction on the C-N stretching frequencies. The lower nu C-N for FeIIMb-CN relative to the ferric complex is attributed to the appearance of additional electron density on all the anti-bonding CN orbitals. The extra electron density was also used to explain that the band width of C-N stretching mode was greater in the ferrous complexes than in the ferric complex. Finally, the calculation shows that sigma donation weakens the Fe-C bond, in qualitative agreement with the spontaneous dissociation of CN- from FeIIMb at -5 degrees C. The sensitivity of CN complexes of ferrous heme proteins to the heme pocket environment and the ability to correlate spectroscopic parameters with calculated electron density suggest that infrared spectroscopy of the CN ligand is an appropriate tool to study ferrous heme proteins.
在0摄氏度以下制备并维持的亚铁肌红蛋白氰化物配合物足够稳定,可用于光谱表征,并能与游离氢氰酸以及其他铁氰和亚铁氰配合物进行比较。亚铁肌红蛋白 - 氰化物的可见吸收光谱在571和563纳米处有一个分裂的α带最大值,表明卟啉的x - y平面存在畸变。与一氧化碳配合物一样,亚铁肌红蛋白 - 氰化物通过圆二色性被发现具有光学活性。氰 - 亚铁配合物的C - N伸缩频率对血红素口袋内的参数非常敏感。具体数值如下:pH为8时的亚铁肌红蛋白为2057厘米-1,在pH为5.6时在2078厘米-1处出现一个肩峰;亚铁肌红蛋白原,2034厘米-1。相比之下,铁血红素配合物中C - N伸缩的频率差异不大,肌红蛋白、血红蛋白和微过氧化物酶的范围为2123至2125厘米-1。这些数值与游离氢氰酸(2094厘米-1)或氰离子(2080厘米-1)相比。利用中性铁卟啉配合物与咪唑和氰化物及其阴离子的量子化学模型来解释氰化物配位和铁还原对C - N伸缩频率的影响。相对于铁配合物,亚铁肌红蛋白 - 氰化物的较低的νC - N归因于所有反键CN轨道上出现了额外的电子密度。额外的电子密度也被用于解释亚铁配合物中C - N伸缩模式的带宽比铁配合物中的更大。最后,计算表明σ给予会削弱Fe - C键,这与在-5摄氏度下氰离子从亚铁肌红蛋白中自发解离在定性上是一致的。亚铁血红素蛋白的氰配合物对血红素口袋环境的敏感性以及将光谱参数与计算出的电子密度相关联的能力表明,CN配体的红外光谱是研究亚铁血红素蛋白的合适工具。