Suppr超能文献

神经元微丝的分子组成在空间和时间上受到调控。

The molecular composition of neuronal microfilaments is spatially and temporally regulated.

作者信息

Weinberger R, Schevzov G, Jeffrey P, Gordon K, Hill M, Gunning P

机构信息

Developmental Neurobiology Unit, Children's Medical Research Institute, Wentworthville, New South Wales, Australia.

出版信息

J Neurosci. 1996 Jan;16(1):238-52. doi: 10.1523/JNEUROSCI.16-01-00238.1996.

Abstract

The actin-based microfilament system is thought to play a critical role in neuronal development. We have determined specific changes in the composition of microfilaments accompanying neuronal morphogenesis. By using specific antibodies against the isoforms for tropomyosin (Tm) (Tm-5 and TmBr-1/-3) and actin (beta- and gamma-actin), we found that during early morphogenesis in vivo immature growing axons contain beta- and gamma-actin and Tm-5. In particular, Tm-5 is exclusively located in the immature axonal processes relative to the neuronal cell body. In contrast, beta-actin and Tm-5 are absent in mature, quiescent axons. This developmental loss from axons is associated with an approximately twofold downregulation of beta-actin and Tm-5 levels in the brain; gamma-actin levels do not change, and this molecule is widely distributed throughout neurons during development. The loss of beta-actin and Tm-5 from axons is accompanied by a progressive appearance of TmBr-1/-3. This apparent replacement of Tm-5 with TmBr-1/-3 occurs over a 2 d time period during rat embryonic hindbrain development and is conserved in evolution between birds and mammals. The loss of Tm-5 from axons involves a redistribution of this molecule to the cell soma and dendrites. These findings suggest that specialized microfilament domains are associated with the development and maintenance of neuronal polarity. We conclude that these Tm isoforms and beta-actin are subject to specific patterns of segregation associated with axonal development and neuronal differentiation. This provides a potential molecular basis for the temporal and spatial specificity of microfilament function during neuronal differentiation.

摘要

基于肌动蛋白的微丝系统被认为在神经元发育中起关键作用。我们已经确定了伴随神经元形态发生的微丝组成的特定变化。通过使用针对原肌球蛋白(Tm)(Tm-5和TmBr-1/-3)和肌动蛋白(β-和γ-肌动蛋白)同工型的特异性抗体,我们发现,在体内早期形态发生过程中,未成熟的生长轴突含有β-和γ-肌动蛋白以及Tm-5。特别是,相对于神经元细胞体,Tm-5仅位于未成熟的轴突过程中。相比之下,成熟的、静止的轴突中不存在β-肌动蛋白和Tm-5。轴突的这种发育性丢失与大脑中β-肌动蛋白和Tm-5水平约两倍的下调相关;γ-肌动蛋白水平没有变化,并且该分子在发育过程中广泛分布于整个神经元。轴突中β-肌动蛋白和Tm-5的丢失伴随着TmBr-1/-3的逐渐出现。在大鼠胚胎后脑发育过程中,这种Tm-5被TmBr-1/-3的明显替代在2天的时间段内发生,并且在鸟类和哺乳动物之间的进化中是保守的。轴突中Tm-5的丢失涉及该分子重新分布到细胞体和树突。这些发现表明,特化的微丝结构域与神经元极性的发育和维持相关。我们得出结论,这些Tm同工型和β-肌动蛋白受到与轴突发育和神经元分化相关的特定分离模式的影响。这为神经元分化过程中微丝功能的时空特异性提供了潜在的分子基础。

相似文献

6
Actin and tropomyosin isoforms in morphogenesis.形态发生中的肌动蛋白和原肌球蛋白异构体
Anat Embryol (Berl). 1997 Apr;195(4):311-5. doi: 10.1007/s004290050050.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验