Lavezzi P, Bondioni M P, Chiesa A, Ettorre G C
Cattedra di Radiologia, Università, Brescia.
Radiol Med. 1996 Jan-Feb;91(1-2):33-8.
The study of the temporal region has been improved by technologic progress from conventional radiography to linear tomography, then to pluridirectional tomography, CT and, finally, MRI. Twenty-five patients were examined with MRI--50 temporal regions in all. MRI was performed with a brain coil, SE T1-weighted sequences (TR 500 ms, TE 25 ms, FOV 180 mm, matrix 256 x 512, 2 acquisitions, slice thickness: 3 mm, acquisition time: 5.30 minutes) before and after Gd-DTPA administration. SE T2-weighted sequences (TR 2000 ms, TE 20-80 ms, FOV 180 mm, matrix 256 x 256, 1 acquisition, slice thickness: 4 mm, acquisition time: 8.30 minutes), 3D CISS sequences (TR 20 ms, TE 8 ms, FOV 180 mm, matrix 256 x 256, acquisition time: 2.46 minutes) and MRA 3D TOF TONE sequences (TR 33 ms, TE 8 ms, FOV 180 mm, matrix 256 x 256, acquisition time: 9.30 minutes) were performed. Neither the temporal bone, made of compact tissue, nor the air spaces (mastoid, antrum, middle ear cavity) exhibit any MR signal. On the contrary, the fluid filling the membranous labyrinth (endolymph and perilymph) and the cerebrospinal fluid filling the internal acoustic canal and the cerebello-pontine angle have high signal. This pattern allows a detailed study, unfeasible with CT, of the inner ear structures (cochlea, vestibule and semicircular canal) and of the internal acoustic canal. Moreover, MRI allows the whole VII and VIII cranial nerves to be studied from their origin at the brain stem to the internal acoustic porus and into the internal acoustic canal. Finally, MRI permits the noninvasive study of temporal region vessels. To conclude, MRI yields new anatomical details of the temporal region useful to address major diagnostic issues--e.g., labyrinth, internal acoustic canal and cerebello-pontine angle lesions.
从传统放射照相术到线性断层摄影术,再到多向断层摄影术、CT,最后到MRI,技术的进步推动了颞骨区域研究的发展。对25例患者进行了MRI检查,共检查了50个颞骨区域。使用头部线圈进行MRI检查,在注射钆喷酸葡胺(Gd-DTPA)前后分别采用自旋回波(SE)T1加权序列(重复时间[TR]500毫秒,回波时间[TE]25毫秒,视野[FOV]180毫米,矩阵256×512,采集2次,层厚3毫米,采集时间5.30分钟)。还采用了SE T2加权序列(TR 2000毫秒,TE 20 - 80毫秒,FOV 180毫米,矩阵256×256,采集1次,层厚4毫米,采集时间8.30分钟)、三维稳态构成干扰序列(3D CISS序列,TR 20毫秒,TE 8毫秒,FOV 180毫米,矩阵256×256,采集时间2.46分钟)以及磁共振血管造影(MRA)三维时间飞跃法(3D TOF)TONE序列(TR 33毫秒,TE 8毫秒,FOV 180毫米,矩阵256×256,采集时间9.30分钟)。由致密组织构成的颞骨以及气腔(乳突、鼓窦、中耳腔)均未显示任何磁共振信号。相反,填充膜迷路的液体(内淋巴和外淋巴)以及填充内耳道和桥小脑角的脑脊液具有高信号。这种信号模式使得能够对内耳结构(耳蜗、前庭和半规管)以及内耳道进行详细研究,而这在CT检查中是无法实现的。此外,MRI能够研究整个第VII和第VIII对脑神经,从它们在脑干的起源直至内耳道孔并进入内耳道。最后,MRI允许对颞骨区域血管进行无创研究。总之,MRI提供了颞骨区域新的解剖学细节,有助于解决主要的诊断问题,例如迷路、内耳道和桥小脑角病变。