Suppr超能文献

蛛网膜下腔出血家族史的验证

Validation of family history in subarachnoid hemorrhage.

作者信息

Bromberg J E, Rinkel G J, Algra A, Greebe P, Beldman T, van Gijn J

机构信息

University Department of Neurology, Utrecht, Netherlands.

出版信息

Stroke. 1996 Apr;27(4):630-2. doi: 10.1161/01.str.27.4.630.

Abstract

BACKGROUND AND PURPOSE

In 6% to 9% of patients with subarachnoid hemorrhage (SAH), familial aggregation occurs; truly familial cases carry a worse prognosis than sporadic cases and raise the question of screening. If relatives have died from SAH, the family history is often the only available clue to the diagnosis, but the sensitivity and predictive value of such a history for SAH are unknown.

METHODS

We contacted a next of kin for a consecutive series of patients who had died in the hospital of subarachnoid hemorrhage (n=20), intracerebral hemorrhage (n=22), or ischemic stroke (n=23) between 3 and 5 years previously, and we compared the diagnosis based on the history from this next of kin with the medical diagnosis confirmed by a CT scan.

RESULTS

The positive predictive value of the diagnosis of "probable SAH" from the history in our study sample was 0.7; when adjusted for incidence rates in the general population it was 0.6 (95% confidence interval, 0.3 to 0.8). The sensitivity of the diagnosis based on the history was 0.5 (95% confidence interval. 0.3 to 0.7); 10 of the 20 cases of SAH were not identified.

CONCLUSIONS

The family history of SAH, without confirmation from medical documents, is an insufficiently accurate tool to prove or disprove the diagnosis of familial SAH.

摘要

背景与目的

在6%至9%的蛛网膜下腔出血(SAH)患者中存在家族聚集现象;真正的家族性病例预后比散发性病例更差,并引发了筛查的问题。如果亲属死于SAH,家族史往往是诊断的唯一可用线索,但这种家族史对SAH的敏感性和预测价值尚不清楚。

方法

我们联系了一系列在3至5年前死于医院的蛛网膜下腔出血(n = 20)、脑出血(n = 22)或缺血性卒中(n = 23)患者的近亲,并将基于该近亲提供的家族史做出的诊断与CT扫描确诊的医学诊断进行比较。

结果

在我们的研究样本中,家族史诊断“可能为SAH”的阳性预测值为0.7;根据一般人群的发病率进行调整后为0.6(95%置信区间,0.3至0.8)。基于家族史诊断的敏感性为0.5(95%置信区间,0.3至0.7);20例SAH病例中有10例未被识别。

结论

未经医学文件证实的SAH家族史,作为证明或排除家族性SAH诊断的工具,准确性不足。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验