Suppr超能文献

Characterization and subcellular localization of human Pmel 17/silver, a 110-kDa (pre)melanosomal membrane protein associated with 5,6,-dihydroxyindole-2-carboxylic acid (DHICA) converting activity.

作者信息

Lee Z H, Hou L, Moellmann G, Kuklinska E, Antol K, Fraser M, Halaban R, Kwon B S

机构信息

Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA.

出版信息

J Invest Dermatol. 1996 Apr;106(4):605-10. doi: 10.1111/1523-1747.ep12345163.

Abstract

Pmel 17 is preferentially expressed in pigment cells in a manner suggestive of involvement in melanin biosynthesis. The gene is identical to the silver (si) pigmentation locus in mice. We now produced a recombinant glutathione-S-transferase-human Pmel 17 infusion protein and raised polyclonal antibodies against it to confirm the ultrastructural location and presumed site of action predicted by the deduced primary structure of Pmel 17/silver, and to authenticate the specificity of the DHICA converting function as inherent to the silver-locus protein. Full-length Pmel 17 cDNA also produced in insect cells in a baculovirus expression vector to ensure that activity did not originate from a co-precipitated protein. Natural hPmel 17 from human melanoma cells has an approximate molecular size of 100 kDa. By immunoperoxidase electron microscopic cytochemistry, the antigen was localized to the limiting membranes of premelanosomes and presumed premelanogenic cytosolic vesicles and, to a minor extent, in the premelanosomal matrix. In an in vitro assay, both the natural and the recombinant Pmel 17 accelerated the conversion of DHICA to melanin. This activity was inhibited by the anti-Pmel 17 polyclonal antibodies, indicating that the acceleration of DHICA conversion by natural protein is genuine and cannot be due to contaminating complexed proteins. We suggest that in situ Pmel 17/silver is a component of a postulated premelanosomal/melanosomal complex of membrane-bound melanogenic oxidoreductive enzymes and cofactors, in analogy to the electron transfer chain in mitochondria.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验