Suppr超能文献

Continuous monitoring of cellular nitric oxide generation by spin trapping with an iron-dithiocarbamate complex.

作者信息

Kotake Y, Tanigawa T, Tanigawa M, Ueno I, Allen D R, Lai C S

机构信息

Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA.

出版信息

Biochim Biophys Acta. 1996 Apr 17;1289(3):362-8. doi: 10.1016/0304-4165(95)00172-7.

Abstract

Nitric oxide (NO) generation in murine macrophages was determined in real time using the electron paramagnetic resonance (EPR) spin trapping method. An iron complex of N-methyl D-glucamine dithiocarbamate was utilized as the spin trap. This spin trapping compound reacts with NO in solution to form a specific room-temperature stable, mononitrosyl complex which is readily detected and identified by EPR spectroscopy. Mouse peritoneal macrophages were placed in an EPR sample-cell and activated by lipopolysaccharide and gamma-interferon at 37 degrees C, followed by an additional incubation in oxygenated medium without these activation agents. After various incubation periods, spin trap solution was infused to replace the medium in the sample-cell, and the time-evolution of the EPR signal of the spin adduct (NO-complex) was recorded. Rates of NO generation were calculated based upon the initial slopes of the increase in the EPR intensity with time. In comparison to the NO (or NO2-) generation rate obtained under similar experimental conditions using the Griess reaction assay, the spin trapping method was found to be more sensitive, with a lowest limit of the detection of 3 pmol/min. In addition, by using the spin trapping method, NO generation from the same cells could be measured consecutively during various stages of activation, because infusion of the spin trap solution did not affect the viability of macrophages.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验