Suppr超能文献

4-Hydroxyhexenal is a potent inducer of the mitochondrial permeability transition.

作者信息

Kristal B S, Park B K, Yu B P

机构信息

Department of Physiology, University of Texas Health Science Center, San Antonio 78284-7756, USA.

出版信息

J Biol Chem. 1996 Mar 15;271(11):6033-8. doi: 10.1074/jbc.271.11.6033.

Abstract

Mitochondria undergo at least two types of structural alteration in response to various physiological and pathophysiological stimuli. One type is nonreversible and is associated with mitochondrial lysis. The second is reversible and appears to be associated with calcium-mediated activation of a specific inner mitochondrial membrane channel. The mechanisms underlying the induction of this second alteration, termed a mitochondrial permeability transition (PT), have been the subject of a great deal of recent research. Using rat liver mitochondria, our data demonstrate that calcium-mediated PT induction can be affected by the lipid peroxidation byproducts 4-hydroxynonenal and 4-hydroxyhexenal (HHE). 4-Hydroxynonenal appears inactive at concentrations <1 micromole but displays both stimulatory and inhibitory effects as part of a biphasic dose response between approximately 1 and 200 micromole. In contrast, HHE consistently enhances calcium-mediated induction of the PT, even at femtomolar concentrations. The exquisite specificity and sensitivity of HHE led to further studies to examine the nature of this induction. Studies showing that HHE-mediated induction could be prevented by cyclosporin A confirmed PT involvement. Further studies showed that induction was dependent on both calcium and electron transport chain function. Pretreatment of the HHE with glutathione also prevented PT induction, but simultaneous addition of the thiol reagents dithiothreitol or glutathione, which often prevents PT induction, was ineffective, attesting to the effectiveness of HHE as an inducer. Together, these data provide a possible mechanistic explanation for the previously observed effects of lipid peroxidation on PT induction.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验