Jezek P, Hanus J, Semrad C, Garlid K D
Department of Membrane Transport Biophysics, Czech Institute of Physiology, Academy of Sciences, Prague, Chez Republic.
J Biol Chem. 1996 Mar 15;271(11):6199-205. doi: 10.1074/jbc.271.11.6199.
The protonophoretic function of uncoupling protein (UCP) is activated by fatty acids. According to the "docking site" hypothesis (Jezek, P., and Garlid, K. D., J. Biol. Chem. 265, 19303-19311, 1990), the fatty acid binding site is identical with the anion channel of UCP. Skulachev (Skulachev, V. P. (1991) FEBS Lett. 294, 158-162) extended this hypothesis by suggesting that fatty acid anions are transported by UCP and that H+ are delivered by back-diffusion of the protonated fatty acid through the lipid bilayer. In this model, UCP does not transport H+ at all but rather enables fatty acids to act as cycling protonophores. New evidence supports this mechanism (Garlid, K. D., Orosz, D. E., Modriansky, M., Vassanelli, S., and Jezek, P. (1996) J. Biol. Chem. 271, 2615-2620). To help elucidate these hypotheses, we synthesized a photoreactive analog of dodecanoic acid, 12-(4-azido-2-nitrophenylamino)dodecanoic acid (AzDA), and studied its effect on transport in mitochondria and proteoliposomes. AzDA behaved in every respect like a typical fatty acid. In micromolar doses, AzDA activated H+ translocation and inhibited Cl- and hexanesulfonate uniport through UCP. After UV light exposure, however, activation of H+ transport was inhibited, whereas inhibition of anion transport was preserved. These effects were irreversible. Photolabeling of mitochondria with [3H]AzDA resulted in a prominent 32 kDa band of UCP, and few other proteins were labeled. The results indicate that AzDA can be ligated to the protein at or near the docking site, causing irreversible inhibition of both H+ and anion transport. The finding that fatty acid-induced H+ transport disappears along with anion transport supports the fatty acid-protonophore mechanism of H+ transport by UCP.
解偶联蛋白(UCP)的质子载体功能可被脂肪酸激活。根据“对接位点”假说(Jezek, P.和Garlid, K. D., J. Biol. Chem. 265, 19303 - 19311, 1990),脂肪酸结合位点与UCP的阴离子通道相同。Skulachev(Skulachev, V. P. (1991) FEBS Lett. 294, 158 - 162)扩展了这一假说,提出脂肪酸阴离子由UCP转运,而H⁺则通过质子化脂肪酸在脂质双层中的反向扩散传递。在这个模型中,UCP根本不转运H⁺,而是使脂肪酸能够作为循环质子载体发挥作用。新的证据支持了这一机制(Garlid, K. D., Orosz, D. E., Modriansky, M., Vassanelli, S., and Jezek, P. (1996) J. Biol. Chem. 271, 2615 - 2620)。为了帮助阐明这些假说,我们合成了十二烷酸的光反应类似物12 -(4 - 叠氮基 - 2 - 硝基苯氨基)十二烷酸(AzDA),并研究了其对线粒体和蛋白脂质体转运的影响。AzDA在各方面的表现都像一种典型的脂肪酸。在微摩尔剂量下,AzDA激活H⁺转运,并抑制通过UCP的Cl⁻和己烷磺酸盐单向转运。然而,在紫外线照射后,H⁺转运的激活受到抑制,而阴离子转运的抑制作用依然存在。这些效应是不可逆的。用[³H]AzDA对线粒体进行光标记,产生了一条突出的32 kDa的UCP条带,几乎没有其他蛋白质被标记。结果表明,AzDA可以在对接位点或其附近与蛋白质结合,导致H⁺和阴离子转运的不可逆抑制。脂肪酸诱导的H⁺转运与阴离子转运一起消失的这一发现支持了UCP介导的H⁺转运的脂肪酸 - 质子载体机制。