von Moltke L L, Greenblatt D J, Harmatz J S, Duan S X, Harrel L M, Cotreau-Bibbo M M, Pritchard G A, Wright C E, Shader R I
Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, Massachusetts, USA.
J Pharmacol Exp Ther. 1996 Feb;276(2):370-9.
Biotransformation of the triazolobenzodiazepine triazolam to its hydroxylated metabolites, alpha-hydroxy (OH)- and 4-OH-triazolam, was studied in vitro using microsomal preparations of human liver. Mean values of Vmax (10.3 nM/min/mg of protein) and Km (304 microM) for the 4-OH pathway exceeded values for the alpha-OH pathway (2.4 and 74, respectively). However the mean Vmax/Km ratios for the two pathways were nearly identical, indicating that both contribute approximately equally to intrinsic clearance. Ketoconazole was a powerful inhibitor of triazolam biotransformation, having mean competitive Ki values of 0.006 and 0.023 microM for the alpha-OH and 4-OH pathways. This is consistent with the role of P450-3A isoforms in mediating triazolam biotransformation. The serotonin2 antagonist antidepressant nefazodone inhibited the alpha-OH and 4-OH pathways (Ki = 0.6 and 1.7 microM, respectively), but with considerably less activity than ketoconazole. Among six selective serotonin reuptake-inhibitor antidepressants, norfluoxetine was the most potent inhibitor (Ki = 2.7 and 8.0 microM) and fluoxetine itself was the weakest (Ki = 7.0 and 44.3 microM). In a double-blind clinical pharmacokinetic-pharmacodynamic study, administration of triazolam (0.125 mg) preceded by ketoconazole, compared to triazolam preceded by placebo, produced a nearly 9-fold reduction in apparent oral clearance of triazolam (41 vs. 337 ml/min) and a 4-fold prolongation of half-life (13.5 vs. 3.4 hr). Pharmacodynamic testing indicated enhancement of electroencephalographic beta activity, and enhanced decrements in digit-symbol substitution test performance, attributable to coadministration of ketoconazole. Plasma ketoconazole concentrations measured in the clinical study ranged from 0.02 microgram/ml (projected minimum) to 4.95 micrograms/ml (maximum). An in vitro-in vivo scaling model, using these plasma ketoconazole concentrations together with liver partition ratios and the in vitro Ki values, predicted a decrement of triazolam clearance due to ketoconazole coadministration that was consistent with the 88% decrement in clearance actually observed in vivo.
使用人肝脏微粒体制剂在体外研究了三唑并苯二氮䓬类药物三唑仑向其羟基化代谢产物α-羟基(OH)-和4-羟基-三唑仑的生物转化。4-羟基途径的Vmax(10.3 nM/分钟/毫克蛋白质)和Km(304 microM)的平均值超过了α-羟基途径的值(分别为2.4和74)。然而,两条途径的平均Vmax/Km比值几乎相同,表明两者对内在清除率的贡献大致相等。酮康唑是三唑仑生物转化的强效抑制剂,对α-羟基和4-羟基途径的平均竞争性Ki值分别为0.006和0.023 microM。这与P450-3A同工型在介导三唑仑生物转化中的作用一致。5-羟色胺2拮抗剂抗抑郁药奈法唑酮抑制α-羟基和4-羟基途径(Ki分别为0.6和1.7 microM),但活性远低于酮康唑。在六种选择性5-羟色胺再摄取抑制剂抗抑郁药中,去甲氟西汀是最有效的抑制剂(Ki = 2.7和8.0 microM),而氟西汀本身是最弱的(Ki = 7.0和44.3 microM)。在一项双盲临床药代动力学-药效学研究中,与服用安慰剂后服用三唑仑相比,服用酮康唑后再服用三唑仑(0.125毫克)使三唑仑的表观口服清除率降低了近9倍(41对337毫升/分钟),半衰期延长了4倍(13.5对3.4小时)。药效学测试表明,由于同时服用酮康唑,脑电图β活性增强,数字符号替换测试表现的下降增强。临床研究中测得的血浆酮康唑浓度范围为0.02微克/毫升(预计最小值)至4.95微克/毫升(最大值)。一个体外-体内缩放模型,将这些血浆酮康唑浓度与肝脏分配比和体外Ki值一起使用,预测由于同时服用酮康唑导致的三唑仑清除率下降与体内实际观察到的清除率下降88%一致。