Degano M, Gopaul D N, Scapin G, Schramm V L, Sacchettini J C
Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
Biochemistry. 1996 May 14;35(19):5971-81. doi: 10.1021/bi952999m.
Protozoan parasites rely on the host for purines since they lack a de novo synthetic pathway. Crithidia fasciculata salvages exogenous inosine primarily through hydrolysis of the N-ribosidic bond using several nucleoside hydrolases. The most abundant nucleoside hydrolase is relatively nonspecific but prefers inosine and uridine as substrates. Here we report the three-dimensional structure of the inosine-uridine nucleoside hydrolase (IU-NH) from C. fasciculata determined by X-ray crystallography at a nominal resolution of 2.5 A. The enzyme has an open (alpha, beta) structure which differs from the classical dinucleotide binding fold. IU-nucleoside hydrolase is composed of a mixed eight-stranded beta sheet surrounded by six alpha helices and a small C-terminal lobe composed of four alpha helices. Two short antiparallel beta strands are involved in intermolecular contacts. The catalytic pocket is located at the C-terminal end of beta strands beta 1 and beta 4. Four aspartate residues are located at the bottom of the cavity in a geometry which suggests interaction with the ribose moiety of the nucleoside. These groups could provide the catalytically important interactions to the ribosyl hydroxyls and the stabilizing anion for the oxycarbonium-like transition state. Histidine 241, located on the side of the active site cavity, is the proposed proton donor which facilitates purine base departure [Gopaul, D. N., Meyer, S. L., Degano, M., Sacchettini, J. C., & Schramm, V. L. (1996) Biochemistry 35, 5963-5970]. The substrate binding site is unlike that from purine nucleoside phosphorylase, phosphoribosyltransferases, or uracil DNA glycosylase and thus represents a novel architecture for general acid-base catalysis. This detailed knowledge of the architecture of the active site, together with the previous transition state analysis [Horenstein, B. A., Parkin, D. W., Estupiñán, B., & Schramm, V. L. (1991) Biochemistry 30, 10788-10795], allows analysis of the interactions leading to catalysis and an explanation for the tight-binding inhibitors of the enzyme [Schramm, V. L., Horenstein, B. A., & Kline, P. C. (1994) J. Biol. Chem. 269, 18259-18262].
原生动物寄生虫因缺乏从头合成途径而依赖宿主获取嘌呤。 fasciculata主要通过使用几种核苷水解酶水解N - 核糖苷键来挽救外源性肌苷。最丰富的核苷水解酶相对非特异性,但更喜欢肌苷和尿苷作为底物。在这里,我们报告了通过X射线晶体学在名义分辨率为2.5 Å下测定的来自 fasciculata的肌苷 - 尿苷核苷水解酶(IU - NH)的三维结构。该酶具有开放的(α,β)结构,不同于经典的二核苷酸结合折叠。IU - 核苷水解酶由一个混合的八链β折叠组成,周围环绕着六个α螺旋和一个由四个α螺旋组成的小C末端叶。两条短的反平行β链参与分子间接触。催化口袋位于β链β1和β4的C末端。四个天冬氨酸残基以一种表明与核苷的核糖部分相互作用的几何形状位于腔的底部。这些基团可以为核糖基羟基提供催化重要的相互作用,并为氧鎓样过渡态提供稳定阴离子。位于活性位点腔侧面的组氨酸241是提议的质子供体,它促进嘌呤碱基离去[Gopaul,D. N.,Meyer,S. L.,Degano,M.,Sacchettini,J. C.,& Schramm,V. L.(1996)Biochemistry 35,5963 - 5970]。底物结合位点不同于嘌呤核苷磷酸化酶、磷酸核糖转移酶或尿嘧啶DNA糖基化酶的底物结合位点,因此代表了一种用于酸碱催化的新型结构。对活性位点结构的这种详细了解,连同先前的过渡态分析[Horenstein,B. A.,Parkin,D. W.,Estupiñán,B.,& Schramm,V. L.(1991)Biochemistry 30,10788 - 10795],允许分析导致催化的相互作用,并解释该酶的紧密结合抑制剂[Schramm,V. L.,Horenstein,B. A.,& Kline,P. C.(1994)J. Biol. Chem. 269,18259 - 18262]。