Suppr超能文献

中子诱发的具有受限能量、射程和生物效应的反冲质子

Neutron induced recoil protons of restricted energy and range and biological effectiveness.

作者信息

Geard C R

机构信息

Center for Radiological Research, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA.

出版信息

Health Phys. 1996 Jun;70(6):804-11. doi: 10.1097/00004032-199606000-00004.

Abstract

Low energy neutrons (<2 MeV), those of principal concern in radiation protection, principally initiate recoil protons in biological tissues. The recoil protons from monoenergetic neutrons form rectangular distributions with energy. Monoenergetic neutrons of different energies (<2 MeV) will then produce overlapping recoil proton spectra. By overlapping the effects of individual deposition events, determined microdosimetrically for cell nuclear dimensions, from such neutron beams the biological effectiveness of recoil protons within defined energy and range bounds can be determined. Here chromosomal aberrations per cell have been quantified following irradiation of Vicia faba cells with monoenergetic neutrons of 230, 320, 430, and 1,910 keV. Aberration frequencies from cells from part of the cell cycle, thereby limiting nuclear dimensions, were linearly related to dose and to the frequency of proton recoils per nucleus. The 320 keV neutrons were the most biologically effective per unit absorbed dose and 430 keV neutrons most effective per recoil proton, with 21% of recoils inducing aberrations. After extraction of effectiveness per proton recoil within each energy and range bounds (0-230, 230-320, 320-430, and 430-1,910 keV), it was concluded that recoil protons with energies of about 200-300 keV, traveling 2.5-4 microm and depositing energy at about 80 keV micrometer(-1), are more efficient at aberration induction than those recoil protons of lesser range though near equivalent LET and those of greater range through lesser LET. This approach allows for assessment of the biological effectiveness of individual energy deposition events from low energy neutrons, the lowest dose a cell can receive, and provides an alternative to considerations of relative biological effectiveness.

摘要

低能中子(<2 MeV)是辐射防护中主要关注的对象,主要在生物组织中引发反冲质子。单能中子产生的反冲质子形成能量的矩形分布。不同能量(<2 MeV)的单能中子会产生重叠的反冲质子能谱。通过叠加单个沉积事件的效应(针对细胞核尺寸进行微剂量测定),可以确定来自此类中子束的、在限定能量和射程范围内的反冲质子的生物学效应。在此,用能量为230、320、430和1910 keV的单能中子辐照蚕豆细胞后,对每个细胞的染色体畸变进行了量化。处于细胞周期部分阶段的细胞(从而限制了细胞核尺寸)的畸变频率与剂量以及每个细胞核的质子反冲频率呈线性相关。每单位吸收剂量下,320 keV中子的生物学效应最强;每个反冲质子而言,430 keV中子最有效,21%的反冲会诱发畸变。在提取了每个能量和射程范围(0 - 230、230 - 320、320 - 430和430 - 1910 keV)内每个质子反冲的效应后,得出结论:能量约为200 - 300 keV、行程为2.5 - 4微米且能量沉积约为80 keV·微米⁻¹的反冲质子,在诱发畸变方面比射程较短但LET相近的反冲质子以及射程较长但LET较小的反冲质子更有效。这种方法能够评估低能中子单个能量沉积事件的生物学效应,即细胞能够接受的最低剂量,并为相对生物学效应的考量提供了一种替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验