Baran H, Cairns N, Lubec B, Lubec G
University of Vienna, Dpt of Pediatrics, Austria.
Life Sci. 1996;58(21):1891-9. doi: 10.1016/0024-3205(96)00173-7.
Excitatory amino acid (EAA) receptors are central to brain physiology and play important roles in learning and memory processes. Kynurenic acid (KYNA), a metabolite of tryptophan in the brain blocks all three classical ionotropic EAA receptors and also serves as an antagonist at the glycine site associated with the N-methyl-D-aspartate receptor (NMDA) complex. We measured the endogenous levels of KYNA and activities of KYNA synthesizing enzymes kynurenine aminotransferase I (KAT I) and kynurenine aminotransferase II (KAT II) in the frontal and temporal cortex of elderly Down syndrome (DS) patients (aged 46-69 years). Compared with control specimens (0.21 +/- 0.06 pmol/mg tissue), the measurement of KYNA content revealed a significant 3-fold increase in frontal cortex of DS patients (0.67 +/- 0.13 pmol/mg tissue; p < or = 0.01). In temporal cortex KYNA levels were increased by 151% (p < or = 0.05) of control (0.41 +/- 0.09 pmol/mg tissue) Using crude cell free homogenate KAT's activities were determined in the presence of the 1 mM 2-oxoacid as a co-substrate at their pH optima of 10.0 for KAT I and 7.4 for KAT II. KATs activities in the presence of 1 mM pyruvate were 2.79 +/- 0.52 and 4.55 +/- 1.98 pmol/mg protein/h for KAT I and 0.98 +/- 0.07 and 1.09 +/- 0.14 pmol/mg protein/h for KAT II in frontal cortex and temporal cortex, respectively. When compared with the brain samples of controls the activity of KAT I was reduced in frontal cortex (9.8 +/- 2.4%; p < or = 0.01) and temporal cortex (25.8 +/- 6.4 %) of DS patients, while KAT II levels were within the normal range. Measurement of the neuronal, cholinergic marker choline acetyltransferase (ChAT) in the frontal cortex, revealed a significant reduction (36.6 +/- 4.3% of control; p < or = 0.01) in DS. Our data demonstrate the involvement of KYNA-metabolism in the cellular mechanisms underlying altered cognitive function in patients with DS. Although the localisation of both, KAT I and KAT II is not stated yet the reduction of KAT I may suggest impairment of KYNA metabolism in neuronal and/or nonneuronal compartments.
兴奋性氨基酸(EAA)受体对脑生理学至关重要,在学习和记忆过程中发挥重要作用。犬尿喹啉酸(KYNA)是脑内色氨酸的一种代谢产物,可阻断所有三种经典的离子型EAA受体,并且在与N-甲基-D-天冬氨酸受体(NMDA)复合物相关的甘氨酸位点处作为拮抗剂。我们测量了老年唐氏综合征(DS)患者(46 - 69岁)额叶和颞叶皮质中KYNA的内源性水平以及KYNA合成酶犬尿氨酸转氨酶I(KAT I)和犬尿氨酸转氨酶II(KAT II)的活性。与对照样本(0.21±0.06 pmol/mg组织)相比,KYNA含量的测量显示DS患者额叶皮质中显著增加了3倍(0.67±0.13 pmol/mg组织;p≤0.01)。在颞叶皮质中,KYNA水平比对照(0.41±0.09 pmol/mg组织)增加了151%(p≤0.05)。使用无细胞粗匀浆,在1 mM 2-氧代酸作为共底物存在的情况下,于KAT I的最适pH 10.0和KAT II的最适pH 7.4下测定KAT的活性。在额叶皮质和颞叶皮质中,1 mM丙酮酸存在时KAT I的活性分别为2.79±0.52和4.55±1.98 pmol/mg蛋白质/小时,KAT II的活性分别为0.98±0.07和1.09±0.14 pmol/mg蛋白质/小时。与对照脑样本相比,DS患者额叶皮质(9.8±2.4%;p≤0.01)和颞叶皮质(25.8±6.4%)中KAT I的活性降低,而KAT II水平在正常范围内。额叶皮质中神经元胆碱能标志物胆碱乙酰转移酶(ChAT)的测量显示,DS患者中显著降低(为对照的36.6±4.3%;p≤0.01)。我们的数据表明KYNA代谢参与了DS患者认知功能改变的细胞机制。尽管KAT I和KAT II的定位尚未阐明,但KAT I的降低可能提示神经元和/或非神经元区室中KYNA代谢受损。