Drake S K, Lee K L, Falke J J
Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215, USA.
Biochemistry. 1996 May 28;35(21):6697-705. doi: 10.1021/bi952430l.
The ion binding parameters of the EF-hand Ca2+ binding motif are carefully tuned for different biological applications. The present study examines the contribution of the ninth position of the Ca2+-coordinating EF-loop to the tuning of Ca2+ affinity and selectivity, using the model EF-loop of the Escherichia coli galactose binding protein. Eight side chains, representing the entire set of side chains commonly observed in natural EF-loop sequences, are tested at the ninth position of the model EF-loop to determine their effects on equilibrium ion binding parameters. Using the spherical metal ions of groups Ia, IIa, and IIIa and the lanthanides as probes, both the Ca2+ affinities and ionic selectivities of the engineered sites are quantitated. Neutral side chains of different size at the ninth EF-loop position [Gln (wild type), Asn, Thr, Ser, Ala, Gly] are observed to yield similar Ca2+ affinities and retain the native ability to exclude the physiological competing metal cations Na+, K+, and Mg2+. Acidic gateway side chains (Glu, Asp) are found to reduce Ca2+ affinity and shift the ionic charge selectivity as much as 10(3)-fold toward trivalent cations. Relative to the native Gln, all engineered side chains cause a partial loss of ionic size selectivity, stemming from enhanced affinities for nonphysiological large ions. Overall, the results have implications for the molecular mechanisms used by the EF-loop to control both (i) charge selectivity, which is proposed to stem from the electrostatic repulsion between the coordinating oxygens, and (ii) size selectivity, which is theorized to involve complex interactions between multiple coordinating side chains. Finally, it has recently been shown that the ninth EF-loop position serves as a "gateway" to modulate the kinetics of Tb3+ binding and release without shifting the equilibrium affinity of this ion [Drake, S. K., & Falke, J. J. (1996) Biochemistry 35, 1753-1760]. The present results confirm that isoelectric substitutions at the gateway position have little effect on Ca2+ affinity, thereby supporting the hypothesis that the gateway side chain provides kinetic tuning of Ca2+ signaling proteins independently of their Ca2+ activation thresholds.
EF 手型钙离子结合基序的离子结合参数针对不同的生物学应用进行了精细调整。本研究利用大肠杆菌半乳糖结合蛋白的模型 EF 环,考察了钙离子配位 EF 环第九位对钙离子亲和力和选择性调节的贡献。在模型 EF 环的第九位测试了代表天然 EF 环序列中常见的全套侧链的八条侧链,以确定它们对平衡离子结合参数的影响。使用第 Ia、IIa 和 IIIa 族的球形金属离子以及镧系元素作为探针,对工程位点的钙离子亲和力和离子选择性进行了定量分析。观察到 EF 环第九位不同大小的中性侧链[谷氨酰胺(野生型)、天冬酰胺、苏氨酸、丝氨酸、丙氨酸、甘氨酸]产生相似的钙离子亲和力,并保留了排除生理竞争金属阳离子钠离子、钾离子和镁离子的天然能力。发现酸性通道侧链(谷氨酸、天冬氨酸)会降低钙离子亲和力,并使离子电荷选择性向三价阳离子方向移动多达 10³倍。相对于天然谷氨酰胺,所有工程侧链都会导致离子大小选择性部分丧失,这源于对非生理性大离子亲和力的增强。总体而言,这些结果对 EF 环用于控制(i)电荷选择性(据推测源于配位氧之间的静电排斥)和(ii)大小选择性(理论上涉及多个配位侧链之间的复杂相互作用)的分子机制具有启示意义。最后,最近的研究表明,EF 环第九位作为一个“通道”来调节铽离子结合和释放的动力学,而不会改变该离子的平衡亲和力[德雷克,S.K.,& 法尔克,J.J.(1996 年)《生物化学》35,1753 - 1760]。本研究结果证实,通道位置的等电取代对钙离子亲和力影响很小,从而支持了通道侧链独立于钙离子激活阈值对钙离子信号蛋白进行动力学调节的假说。