Guérin M, Bruckert E, Dolphin P J, Turpin G, Chapman M J
Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 321, Pavillon Benjamin Delessert, Hôpital de la Pitié, Paris, France.
Arterioscler Thromb Vasc Biol. 1996 Jun;16(6):763-72. doi: 10.1161/01.atv.16.6.763.
The effect of fenofibrate on plasma cholesteryl ester transfer protein (CETP) activity in relation to the quantitative and qualitative features of apoB- and apoA-I-containing lipoprotein subspecies was investigated in nine patients presenting with combined hyperlipidemia. Fenofibrate (200 mg/d for 8 weeks) induced significant reductions in plasma cholesterol (-16%; P < .01), triglyceride (-44%; P < .007), VLDL cholesterol (-52%; P = .01), LDL cholesterol (-14%; P < .001), and apoB (-15%; P < .009) levels and increased HDL cholesterol (19%; P = .0001) and apoA-I (12%; P = .003) levels. An exogenous cholesteryl ester transfer (CET) assay revealed a marked decrease (-26%; P < .002) in total plasma CETP-dependent CET activity after fenofibrate treatment. Concomitant with the pronounced reduction in VLDL levels (37%; P < .005), the rate of CET from HDL to VLDL was significantly reduced by 38% (P = .0001), whereas no modification in the rate of cholesteryl ester exchange between HDL and LDL occurred after fenofibrate therapy. Combined hyperlipidemia is characterized by an asymmetrical LDL profile in which small, dense LDL subspecies (LDL-4 and LDL-5, d = 1.039 to 1.063 g/mL) predominate. Fenofibrate quantitatively normalized the atherogenic LDL profile by reducing levels of dense LDL subspecies (-21%) and by inducing an elevation (26%; P < .05) in LDL subspecies of intermediate density (LDL-3, d = 1.029 to 1.039 g/mL), which possess optimal binding affinity for the cellular LDL receptor. However, no marked qualitative modifications in the chemical composition or size of LDL particles were observed after drug treatment. Interestingly, the HDL cholesterol concentration was increased by fenofibrate therapy, whereas no significant change was detected in total plasma HDL mass. In contrast, the HDL subspecies pattern was modified as the result of an increase in the total mass (11.7%) of HDL2a, HDL3a, and HDL3b (d = 1.091 to 1.156 g/mL) at the expense of reductions in the total mass (-23%) of HDL2b (d = 1.063 to 1.091 g/mL) and HDL3c (d = 1.156 to 1.179 g/mL). Such changes are consistent with a drug-induced reduction in CETP activity. In conclusion, the overall mechanism involved in the fenofibrate-induced modulation of the atherogenic dense LDL profile in combined hyperlipidemia primarily involves reduction in CET from HDL to VLDL together with normalization of the intravascular transformation of VLDL precursors to receptor-active LDLs of intermediate density.
在9名合并高脂血症患者中,研究了非诺贝特对血浆胆固醇酯转运蛋白(CETP)活性的影响,及其与含载脂蛋白B(apoB)和载脂蛋白A-I(apoA-I)的脂蛋白亚类的定量和定性特征的关系。非诺贝特(200mg/d,共8周)可显著降低血浆胆固醇(-16%;P<.01)、甘油三酯(-44%;P<.007)、极低密度脂蛋白胆固醇(VLDL胆固醇,-52%;P=.01)、低密度脂蛋白胆固醇(LDL胆固醇,-14%;P<.001)和apoB(-15%;P<.009)水平,并升高高密度脂蛋白胆固醇(HDL胆固醇,19%;P=.0001)和apoA-I(12%;P=.003)水平。一项外源性胆固醇酯转运(CET)试验显示,非诺贝特治疗后,血浆中总CETP依赖性CET活性显著降低(-26%;P<.002)。随着VLDL水平显著降低(37%;P<.005),HDL向VLDL的CET速率显著降低38%(P=.0001),而非诺贝特治疗后HDL与LDL之间的胆固醇酯交换速率未发生改变。合并高脂血症的特征是LDL谱不对称,其中小而密的LDL亚类(LDL-4和LDL-5,密度d=1.039至1.063g/mL)占主导。非诺贝特通过降低致密LDL亚类水平(-21%)并诱导中等密度LDL亚类(LDL-3,密度d=1.029至l.039g/mL)升高(26%;P<.05),使致动脉粥样硬化的LDL谱在数量上正常化,后者对细胞LDL受体具有最佳结合亲和力。然而,药物治疗后未观察到LDL颗粒的化学组成或大小有明显的定性改变。有趣的是,非诺贝特治疗可使HDL胆固醇浓度升高,而血浆HDL总质量未检测到显著变化。相反,HDL亚类模式发生改变,HDL2a、HDL3a和HDL3b(密度d=1.091至1.156g/mL)的总质量增加(11.7%),而HDL2b(密度d=1.063至1.091g/mL)和HDL3c(密度d=1.156至1.179g/mL)的总质量降低(-23%)。这些变化与药物诱导的CETP活性降低一致。总之,非诺贝特诱导合并高脂血症中致动脉粥样硬化的致密LDL谱改变的总体机制主要涉及HDL向VLDL的CET减少,以及VLDL前体向具有受体活性的中等密度LDL的血管内转化正常化。