Ravicz M E, Rosowski J J, Voigt H F
Eaton-Peabody Laboratory of Auditory Physiology, Massachusetts Eye and Ear Infirmary, Boston 02114, USA.
J Acoust Soc Am. 1996 May;99(5):3044-63. doi: 10.1121/1.414793.
Acoustic power flow into the external and middle ear of the gerbil is computed from acoustic measurements and models of the external ear and used to predict the behavioral auditory threshold. The external-ear radiation impedance from the tympanic ring ZE measured in six gerbil ears with a calibrated acoustic source at frequencies from 10 Hz to 18 kHz is mass dominated below about 8 kHz, with a mean mass of 2720 kg/m4. ZE shows resonant behavior near 8 and 14 kHz. The frequency dependence of ZE is similar to that measured in cat, chinchilla, and models of the human external ear, but the mass and the resonant frequencies are higher. The power utilization ratio (PUR) computed from ZE and measurements of the middle-ear input impedance ZT presented previously [Ravicz et al., J. Acoust. Soc. Am. 92, 157-177 (1992)] suggests that appreciable power is transmitted to the middle ear only above 1.5 kHz. Mathematical external-ear models, consisting of tube segments and conical horns that include viscous and thermal losses, were developed from anatomical dimensions to match ZE over the entire frequency range of measurement. The radiation efficiency eta R computed from the models is near unity only above 12 kHz and falls to 10(-5) as frequency decreases to 10 Hz. Predictions of the mean pressure gain from an external diffuse sound field to the tympanic membrane resemble measurements in another gerbilline species. The effective area of the ear in a diffuse sound field at the tympanic membrane EATMDF computed from PUR and eta R approaches the anatomical area of the pinna opening, 71 mm2, above 1.5 kHz and the geometric limit of lambda 2 /4 pi determined by the wavelength lambda above 12 kHz but decreases sharply below 1.5 kHz to 0.002 mm2 at 10 Hz. The diffuse-field sound pressure required to deliver 5 x 10(-17) W to the middle ear between 10 Hz and 18 kHz resembles the behavioral auditory threshold [Ryan, J. Acoust. Soc. Am. 54, 1222-1226 (1976)]. This result supports the idea that the cochlea acts as a power detector at the auditory threshold.
通过声学测量以及外耳模型计算沙鼠外耳和中耳的声功率流,并用于预测行为听觉阈值。在6只沙鼠耳朵中,使用校准声源在10赫兹至18千赫兹频率下测量鼓膜环处的外耳辐射阻抗ZE,在约8千赫兹以下质量起主导作用,平均质量为2720千克/立方米⁴。ZE在8千赫兹和14千赫兹附近呈现共振行为。ZE的频率依赖性与在猫、毛丝鼠以及人类外耳模型中测量的类似,但质量和共振频率更高。根据ZE以及先前给出的中耳输入阻抗ZT的测量值计算得到的功率利用率(PUR)表明,仅在1.5千赫兹以上才有可观的功率传输到中耳。由管段和包含粘性及热损耗的锥形号角组成的数学外耳模型,根据解剖尺寸构建,以在整个测量频率范围内匹配ZE。从模型计算得到的辐射效率ηR仅在12千赫兹以上接近1,随着频率降至10赫兹,降至10⁻⁵。从外部扩散声场到鼓膜的平均压力增益预测与在另一种沙鼠类物种中的测量结果相似。根据PUR和ηR计算得到的鼓膜处扩散声场中耳朵的有效面积EATMDF在1.5千赫兹以上接近耳廓开口的解剖面积71平方毫米,在12千赫兹以上由波长λ确定的几何极限λ²/4π,但在1.5千赫兹以下急剧下降,在10赫兹时降至0.002平方毫米。在10赫兹至18千赫兹之间向中耳输送5×10⁻¹⁷瓦所需的扩散场声压类似于行为听觉阈值[瑞安;《美国声学学会杂志》54,1222 - 1226(1976)]。这一结果支持了耳蜗在听觉阈值处充当功率探测器的观点。