Suppr超能文献

沙鼠中耳从100赫兹到60千赫兹的声音传导。

Gerbil middle-ear sound transmission from 100 Hz to 60 kHz.

作者信息

Ravicz Michael E, Cooper Nigel P, Rosowski John J

机构信息

Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, Massachusetts 02114, USA.

出版信息

J Acoust Soc Am. 2008 Jul;124(1):363-80. doi: 10.1121/1.2932061.

Abstract

Middle-ear sound transmission was evaluated as the middle-ear transfer admittance H(MY) (the ratio of stapes velocity to ear-canal sound pressure near the umbo) in gerbils during closed-field sound stimulation at frequencies from 0.1 to 60 kHz, a range that spans the gerbil's audiometric range. Similar measurements were performed in two laboratories. The H(MY) magnitude (a) increased with frequency below 1 kHz, (b) remained approximately constant with frequency from 5 to 35 kHz, and (c) decreased substantially from 35 to 50 kHz. The H(MY) phase increased linearly with frequency from 5 to 35 kHz, consistent with a 20-29 micros delay, and flattened at higher frequencies. Measurements from different directions showed that stapes motion is predominantly pistonlike except in a narrow frequency band around 10 kHz. Cochlear input impedance was estimated from H(MY) and previously-measured cochlear sound pressure. Results do not support the idea that the middle ear is a lossless matched transmission line. Results support the ideas that (1) middle-ear transmission is consistent with a mechanical transmission line or multiresonant network between 5 and 35 kHz and decreases at higher frequencies, (2) stapes motion is pistonlike over most of the gerbil auditory range, and (3) middle-ear transmission properties are a determinant of the audiogram.

摘要

在频率范围为0.1至60 kHz(涵盖沙鼠听力测量范围)的闭场声音刺激期间,将中耳声音传输评估为沙鼠的中耳传递导纳H(MY)(镫骨速度与鼓膜脐附近耳道声压之比)。在两个实验室进行了类似测量。H(MY)幅值:(a) 在1 kHz以下随频率增加,(b) 在5至35 kHz随频率大致保持恒定,(c) 在35至50 kHz大幅下降。H(MY)相位在5至35 kHz随频率线性增加,与20 - 29微秒延迟一致,在更高频率处变平。不同方向的测量表明,除了在10 kHz左右的窄频带外,镫骨运动主要呈活塞状。根据H(MY)和先前测量的耳蜗声压估算耳蜗输入阻抗。结果不支持中耳是无损匹配传输线的观点。结果支持以下观点:(1) 中耳传输在5至35 kHz与机械传输线或多共振网络一致,在更高频率处下降;(2) 在沙鼠听觉范围的大部分区域,镫骨运动呈活塞状;(3) 中耳传输特性是听力图的一个决定因素。

相似文献

3
Effects of tympanic membrane perforation on middle ear transmission in gerbil.鼓膜穿孔对沙鼠中耳传音的影响。
Hear Res. 2019 Mar 1;373:48-58. doi: 10.1016/j.heares.2018.12.005. Epub 2018 Dec 15.

引用本文的文献

1
Structure and scaling of the middle ear in domestic dog breeds.家犬品种中耳的结构和比例。
J Anat. 2024 Aug;245(2):324-338. doi: 10.1111/joa.14049. Epub 2024 Apr 11.
4
Comparison of sheep and human middle-ear ossicles: anatomy and inertial properties.羊和人中耳小骨的比较:解剖学和惯性特性。
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2020 Sep;206(5):683-700. doi: 10.1007/s00359-020-01430-w. Epub 2020 Jun 20.
5
Two passive mechanical conditions modulate power generation by the outer hair cells.两种被动机械状态调节外毛细胞的能量产生。
PLoS Comput Biol. 2017 Sep 7;13(9):e1005701. doi: 10.1371/journal.pcbi.1005701. eCollection 2017 Sep.
6
Estimation of Round-Trip Outer-Middle Ear Gain Using DPOAEs.使用畸变产物耳声发射估计往返外中耳增益
J Assoc Res Otolaryngol. 2017 Feb;18(1):121-138. doi: 10.1007/s10162-016-0592-6. Epub 2016 Oct 28.
9
Finite-Element Modelling of the Response of the Gerbil Middle Ear to Sound.沙鼠中耳对声音反应的有限元建模
J Assoc Res Otolaryngol. 2015 Oct;16(5):547-67. doi: 10.1007/s10162-015-0531-y. Epub 2015 Jul 22.

本文引用的文献

5
Middle ear forward and reverse transmission in gerbil.沙鼠中耳的正向和反向传播
J Neurophysiol. 2006 May;95(5):2951-61. doi: 10.1152/jn.01214.2005. Epub 2006 Feb 15.
7
Two-tone distortion in intracochlear pressure.耳蜗内压力的双音失真。
J Acoust Soc Am. 2005 May;117(5):2999-3015. doi: 10.1121/1.1880812.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验