Suppr超能文献

一氧化氮和过氧亚硝酸盐对线粒体电子传递的差异抑制作用。

Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport.

作者信息

Cassina A, Radi R

机构信息

Department of Biochemistry, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.

出版信息

Arch Biochem Biophys. 1996 Apr 15;328(2):309-16. doi: 10.1006/abbi.1996.0178.

Abstract

Various authors have suggested that nitric oxide (.NO) exerts cytotoxic effects through the inhibition of cellular respiration. Indeed, in intact cells .NO inhibits glutamate-malate (complex I) as well as succinate (complex II)-supported mitochondrial electron transport, without affecting TMPD/ascorbate (complex IV)-dependent respiration. However, experiments in our lab using isolated rat heart mitochondria indicated that authentic .NO inhibited electron transport mostly by reversible binding to the terminal oxidase, cytochrome a3, having a less significant effect on complex II- and no effect on complex I-electron transport components. The inhibitory action of .NO was more profound at lower oxygen tensions and resulted in differential spectra similar to that observed in dithionite-treated mitochondria. On the other hand, continuous fluxes of .NO plus superoxide (O.(2)(-)), which lead to formation of micromolar steady-state levels of peroxynitrite anion (ONOO-), caused a strong inhibition of complex I- and complex II-dependent mitochondrial oxygen consumption and significantly inhibited the activities of succinate dehydrogenase and ATPase, without affecting complex IV-dependent respiration and cytochrome c oxidase activity. In conclusion, even though nitric oxide can directly cause a transient inhibition of electron transport, the inhibition pattern of mitochondrial respiration observed in the presence of peroxynitrite is the one that closely resembles that found secondary to .NO interactions with intact cells and strongly points to peroxynitrite as the ultimate reactive intermediate accounting for nitric oxide-dependent inactivation of electron transport components and ATPase in living cells and tissues.

摘要

多位作者提出,一氧化氮(·NO)通过抑制细胞呼吸发挥细胞毒性作用。实际上,在完整细胞中,·NO抑制谷氨酸-苹果酸(复合体I)以及琥珀酸(复合体II)支持的线粒体电子传递,而不影响依赖于N,N,N',N'-四甲基对苯二胺/抗坏血酸(复合体IV)的呼吸作用。然而,我们实验室使用分离的大鼠心脏线粒体进行的实验表明,纯的·NO主要通过与末端氧化酶细胞色素a3可逆结合来抑制电子传递,对复合体II的影响较小,对复合体I电子传递组分没有影响。·NO的抑制作用在较低氧张力下更为显著,并产生类似于连二亚硫酸盐处理的线粒体中观察到的差异光谱。另一方面,持续的·NO与超氧阴离子(O₂⁻)通量会导致微摩尔稳态水平的过氧亚硝酸根阴离子(ONOO⁻)形成,从而强烈抑制依赖于复合体I和复合体II的线粒体氧消耗,并显著抑制琥珀酸脱氢酶和ATP酶的活性,而不影响依赖于复合体IV的呼吸作用和细胞色素c氧化酶活性。总之,尽管一氧化氮可直接导致电子传递的短暂抑制,但在过氧亚硝酸根存在下观察到的线粒体呼吸抑制模式与在·NO与完整细胞相互作用时发现的模式非常相似,这有力地表明过氧亚硝酸根是导致活细胞和组织中电子传递组分和ATP酶一氧化氮依赖性失活的最终反应中间体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验